石油学报 ›› 2021, Vol. 42 ›› Issue (9): 1174-1191.DOI: 10.7623/syxb202109005
白莹, 李建忠, 刘伟, 徐兆辉, 徐旺林, 李欣, Abitkazy Taskyn
收稿日期:
2020-05-08
修回日期:
2021-06-12
出版日期:
2021-09-25
发布日期:
2021-10-12
通讯作者:
白莹,女,1990年2月生,2012年获中国地质大学(北京)学士学位,2017年获北京大学博士学位,现为中国石油勘探开发研究院工程师,主要从事沉积储层与微生物碳酸盐岩研究。
作者简介:
白莹,女,1990年2月生,2012年获中国地质大学(北京)学士学位,2017年获北京大学博士学位,现为中国石油勘探开发研究院工程师,主要从事沉积储层与微生物碳酸盐岩研究。Email:byshimmer@petrochina.com.cn
基金资助:
Bai Ying, Li Jianzhong, Liu Wei, Xu Zhaohui, Xu Wanglin, Li Xin, Abitkazy Taskyn
Received:
2020-05-08
Revised:
2021-06-12
Online:
2021-09-25
Published:
2021-10-12
摘要: 塔里木盆地下寒武统白云岩储层研究尚处于起步阶段,开展白云石化模式系统研究对于明确白云岩储层特征具有重要意义。基于露头观察、岩石薄片鉴定、主量元素、微量元素、稀土元素和碳、氧、锶、镁同位素等资料,对塔里木盆地西北部下寒武统白云岩特征和成因模式进行了系统分析。塔里木盆地西北部阿克苏露头区下寒武统发育微生物白云岩、泥晶白云岩、粉晶—细晶白云岩和中—粗晶白云岩4类白云岩。微生物白云岩属于典型微生物白云石化成因模式,白云石化流体以海水为主。泥晶白云岩、部分粉晶—细晶白云岩和少量中—粗晶白云岩属于典型蒸发泵与回流渗透白云石化成因模式,白云石化流体以回流卤水和海水为主。绝大多数中—粗晶白云岩和部分粉晶—细晶白云岩属于埋藏热液白云石化成因模式,白云石化流体为与烃类充注相关的地层卤水及陆源水。早成岩阶段微生物白云石化作用和蒸发泵与回流渗透白云石化作用是塔里木盆地西北部阿克苏露头区下寒武统微生物白云岩和粉晶—细晶白云岩孔隙发育的基础。
中图分类号:
白莹, 李建忠, 刘伟, 徐兆辉, 徐旺林, 李欣, Abitkazy Taskyn. 塔里木盆地西北部下寒武统白云岩特征及多重白云石化模式[J]. 石油学报, 2021, 42(9): 1174-1191.
Bai Ying, Li Jianzhong, Liu Wei, Xu Zhaohui, Xu Wanglin, Li Xin, Abitkazy Taskyn. Characteristics and multiple dolomitization mode of the Lower Cambrian dolomite reservoir, northwestern Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(9): 1174-1191.
[1] ZENGER D H, DUNHAM J B, ETHINGTON R L.Concepts and models of dolomitization[M]. Houston, Texas:SEPM Special Publication, 1980, 28:1-320. [2] MIDDLETON G V.Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht:Kluwer Academic Publishers, 2003:1-928. [3] ADAMS J E, RHODES M L.Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12):1912-1920. [4] JONES G D, XIAO Yitian.Dolomitization, anhydrite cementation, and porosity evolution in a reflux system:insights from reactive transport models[J]. AAPG Bulletin, 2005, 89(5):577-601. [5] 由雪莲, 孙枢, 朱井泉, 等.微生物白云岩模式研究进展[J]. 地学前缘, 2011, 18(4):52-64. YOU Xuelian, SUN Shu, ZHU Jingquan, et al.Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4):52-64. [6] VASCONCELOS C, MCKENZIE J A, BERNASCONI S, et al.Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546):220-222. [7] VASCONCELOS C, MCKENZIE J A.Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3):378-390. [8] JIANG Lei, PAN Wenqin, CAI Chunfang, et al.Fluid mixing induced by hydrothermal activity in the Ordovician carbonates in Tarim Basin, China[J]. Geofluids, 2015, 15:483-498. [9] DAVIES G R, SMITH L B.Structurally controlled hydrothermal dolomite reservoir facies:an overview[J]. AAPG Bulletin, 2006, 90(11):1641-1690. [10] SMITH L B.Origin and reservoir characteristics of Upper Ordovician Trenton-Black River hydrothermal dolomite reservoirs in New York[J]. AAPG Bulletin, 2006, 90(11):1691-1718. [11] 马永生, 何治亮, 赵培荣, 等.深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12):1415-1425. MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al.A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12):1415-1425. [12] 曹颖辉, 王珊, 张亚金, 等.塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发, 2019, 46(6):1099-1114. CAO Yinghui, WANG Shan, ZHANG Yajin, et al.Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area, Tarim Basin, China[J]. Petroleum Exploration and Development, 2019, 46(6):1099-1114. [13] 张光亚, 温志新, 刘小兵, 等.全球原型盆地演化与油气分布[J]. 石油学报, 2020, 41(12):1538-1554. ZHANG Guangya, WEN Zhixin, LIU Xiaobing, et al.Evolution of global proto-type basin and the petroleum distribution[J]. Acta Petrolei Sinica, 2020, 41(12):1538-1554. [14] 朱光有, 张水昌, 张斌, 等.中国中西部地区海相碳酸盐岩油气藏类型与成藏模式[J]. 石油学报, 2010, 31(6):871-878. ZHU Guangyou, ZHANG Shuichang, ZHANG Bin, et al.Reservoir types of marine carbonates and their accumulation model in western and central China[J]. Acta Petrolei Sinica, 2010, 31(6):871-878. [15] 王招明, 谢会文, 陈永权, 等.塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2):1-13. WANG Zhaoming, XIE Huiwen, CHEN Yongquan, et al.Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2):1-13. [16] 白莹, 徐安娜, 刘伟, 等.塔里木盆地西北部中下寒武统混积岩沉积特征[J]. 天然气工业, 2019, 39(12):46-57. BAI Ying, XU Anna, LIU Wei, et al.Sedimentary characteristics of Lower and Middle Cambrian diamict in the northwestern Tarim Basin[J]. Natural Gas Industry, 2019, 39(12):46-57. [17] 杨海军, 陈永权, 田军, 等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2):62-72. YANG Haijun, CHEN Yongquan, TIAN Jun, et al.Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2):62-72. [18] 郑剑锋, 黄理力, 袁文芳, 等.塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5):698-709. ZHENG Jianfeng, HUANG Lili, YUAN Wenfang, et al.Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5):698-709. [19] 陈代钊, 张艳秋, 周锡强, 等.塔里木盆地西缘上寒武统下丘里塔格群热液白云岩改造时限:来自古地磁的约束[J]. 石油与天然气地质, 2020, 41(1):50-58. CHEN Daizhao, ZHANG Yanqiu, ZHOU Xiqiang, et al.Timing of hydrothermal alteration on the Lower Qiulitag Group dolomites of the Upper Cambrian, western margin of Tarim Basin:palaeomagnetic constraint[J]. Oil & Gas Geology, 2020, 41(1):50-58. [20] 郑剑锋, 沈安江, 黄理力, 等.基于埋藏溶蚀模拟实验的白云岩储层孔隙效应研究——以塔里木盆地下寒武统肖尔布拉克组为例[J]. 石油实验地质, 2017, 39(5):716-723. ZHENG Jianfeng, SHEN Anjiang, HUANG Lili, et al.Pore effect of dolomite reservoirs based on burial dissolution simulation:a case study of the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39(5):716-723. [21] 李宗杰, 王鹏, 陈绪云, 等.塔里木盆地顺南地区超深白云岩储层地震、地质综合预测[J]. 石油与天然气地质, 2020, 41(1):59-67. LI Zongjie, WANG Peng, CHEN Xuyun, et al.Integrated seismic and geological prediction of ultra-deep dolomite reservoir in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1):59-67. [22] 田雷, 崔海峰, 陈永权, 等.塔里木盆地中下寒武统白云岩储层分布特征及勘探意义[J]. 天然气地球科学, 2015, 26(S1):130-138. TIAN Lei, CUI Haifeng, CHEN Yongquan, et al.The distribution characteristics and prospecting significance of the Middle and Lower Cambrian dolomite reservoir in Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(S1):130-138. [23] 严威, 郑剑锋, 陈永权, 等.塔里木盆地下寒武统肖尔布拉克组白云岩储层特征及成因[J]. 海相油气地质, 2017, 22(4):35-43. YAN Wei, ZHENG Jianfeng, CHEN Yongquan, et al.Characteristics and genesis of dolomite reservoir in the Lower Cambrian Xiaoerblak Formation, Tarim Basin[J]. Marine Origin Petroleum Geology, 2017, 22(4):35-43. [24] 张德民, 鲍志东, 潘文庆, 等.塔里木盆地肖尔布拉克剖面中寒武统蒸发台地白云岩储层特征及成因机理[J]. 天然气地球科学, 2014, 25(4):498-507. ZHANG Demin, BAO Zhidong, PAN Wenqing, et al.Characteristics and forming mechanisms of evaporite platform dolomite reservoir in Middle Cambrian of Xiaoerbulake section, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(4):498-507. [25] 易士威, 李明鹏, 郭绪杰, 等.塔里木盆地寒武系盐下勘探领域的重大突破方向[J]. 石油学报, 2019, 40(11):1281-1295. YI Shiwei, LI Mingpeng, GUO Xujie, et al.Breakthrough direction of Cambrian pre-salt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11):1281-1295. [26] 王晓丽, 林畅松, 焦存礼, 等.塔里木盆地中-上寒武统白云岩储层类型及发育模式[J]. 岩性油气藏, 2018, 30(1):63-74. WANG Xiaoli, LIN Changsong, JIAO Cunli, et al.Dolomite reservoir types and development models of Middle-Upper Cambrian in Tarim Basin[J]. Lithologic Reservoirs, 2018, 30(1):63-74. [27] 郑剑锋, 沈安江, 刘永福, 等.塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素[J]. 沉积学报, 2013, 31(1):89-98. ZHENG Jianfeng, SHEN Anjiang, LIU Yongfu, et al.Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1):89-98. [28] 刘策, 张义杰, 李洪辉, 等.塔里木盆地古城地区中下奥陶统白云化流体性质厘定——来自稀土元素的证据[J]. 矿物岩石地球化学通报, 2017, 36(4):602-610. LIU Ce, ZHANG Yijie, LI Honghui, et al.Nature of dolomitizing fluids of Middle-Low Ordovician dolomites in the Gucheng area, Tarim Basin:evidence from rare earth elements geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4):602-610. [29] 黄擎宇.塔里木盆地中央隆起区寒武-奥陶系白云石化作用及白云岩储层成因研究[D].成都:成都理工大学, 2014:1-145. HUANG Qingyu.Dolomitization and origin of the Cambrian-Ordovician dolomite reservoirs in the central uplift, Tarim Basin[D].Chengdu:Chengdu University of Technology, 2014:1-145. [30] 严威, 杨果, 易艳, 等.塔里木盆地柯坪地区上震旦统白云岩储层特征与成因[J]. 石油学报, 2019, 40(3):295-307. YAN Wei, YANG Guo, YI Yan, et al.Characteristics and genesis of Upper Sinian dolomite reservoirs in Keping area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(3):295-307. [31] 焦存礼, 何治亮, 邢秀娟, 等.塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2011, 27(1):277-284. JIAO Cunli, HE Zhiliang, XING Xiujuan, et al.Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1):277-284. [32] 王坤, 胡素云, 刘伟, 等.塔里木盆地古城地区上寒武统热液改造型储层形成机制与分布预测[J]. 天然气地球科学, 2017, 28(6):939-951. WANG Kun, HU Suyun, LIU Wei, et al.The formation mechanism and distribution prediction of the hydrothermal reformed reservoir of the Upper Cambrian in Gucheng area, Tarim Basin, China[J]. Natural Gas Geoscience, 2017, 28(6):28(6):939-951. [33] 王坤, 胡素云, 胡再元, 等.塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J]. 石油学报, 2016, 37(4):439-453. WANG Kun, HU Suyun, HU Zaiyuan, et al.Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development[J]. Acta Petrolei Sinica, 2016, 37(4):439-453. [34] JIANG L, CAI C F, WORDEN R H, et al.Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, North-West China[J]. Sedimentology, 2016, 63(7):2130-2157. [35] 钱一雄, 武恒志, 周凌方, 等.川西中三叠统雷口坡组三段-四段白云岩特征与成因——来自于岩相学及地球化学的约束[J]. 岩石学报, 2019, 35(4):1161-1180. QIAN Yixiong, WU Hengzhi, ZHOU Lingfang, et al.Characteristic and origin of dolomites in the third and fourth members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin:constraints in mineralogical, petrographic and geochemical data[J]. Acta Petrologica Sinica, 2019, 35(4):1161-1180. [36] 白莹, 罗平, 王石, 等.台缘微生物礁结构特点及储集层主控因素——以塔里木盆地阿克苏地区下寒武统肖尔布拉克组为例[J]. 石油勘探与开发, 2017, 44(3):349-358. BAI Ying, LUO Ping, WANG Shi, et al.Structure characteristics and major controlling factors of platform margin microbial reef reservoirs:a case study of Xiaoerbulak Formation, Lower Cambrian, Aksu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3):349-358. [37] 白莹, 罗平, 周川闽, 等.塔西北下寒武统肖尔布拉克组层序划分及台地沉积演化模式[J]. 石油与天然气地质, 2017, 38(1):152-164. BAI Ying, LUO Ping, ZHOU Chuanmin, et al.Sequence division and platform sedimentary evolution model of the Lower Cambrian Xiaoerbulak Formation in the NW Tarim Basin[J]. Oil & Gas Geology, 2017, 38(1):152-164. [38] 白莹, 罗平, 刘伟, 等.微生物碳酸盐岩储层特征及主控因素——以塔里木盆地阿克苏地区下寒武统肖尔布拉克组上段为例[J]. 中国石油勘探, 2018, 23(4):95-106. BAI Ying, LUO Ping, LIU Wei, et al.Characteristics and main controlling factors of microbial carbonate reservoir:a case study of upper member of Lower Cambrian Xiaoerbulake Formation in Akesu area, Tarim Basin[J]. China Petroleum Exploration, 2018, 23(4):95-106. [39] 白莹, 罗平, 刘伟, 等.塔西北下寒武统风暴活动特征及其沉积学响应[J]. 沉积学报, 2019, 37(3):565-578. BAI Ying, LUO Ping, LIU Wei, et al.Storm activity characteristics and their sedimentary responses for the Xiaoerbulak Formation, Lower Cambrian, NW Tarim Basin[J]. Acta Sedimentologica Sinica, 2019, 37(3):565-578. [40] GREGG J M, SIBLEY D F.Epigenetic dolomitization and the origin of xenotopic dolomite texture[J]. Journal of Sedimentary Research, 1984, 54(3):908-931. [41] SIBLEY D F, GREGG J M.Classification of dolomite rock textures[J]. Journal of Sedimentary Research, 1987, 57(6):967-975. [42] 朱筱敏.沉积岩石学[M]. 4版.北京:石油工业出版社, 2008:1-483. ZHU Xiaomin.Sedimentary petrology[M]. 4th ed.Beijing:Petroleum Industry Press, 2008:1-483. [43] RIDING R.Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(S1):179-214. [44] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5):222-234. MEI Mingxiang.Revised classification of microbial carbonates:complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234. [45] FLÜGEL E.Microfacies of carbonate rocks:analysis, interpretation and application[M]. Berlin, Heidelberg:Springer-Verlag, 2004:657-724. [46] GOLDSTEIN R H, REYNOLDS T J.Systematics of fluid inclusions in diagenetic minerals[J]. SEPM Short Course, 1994, 31:199. [47] 汪宗欣, 吕修祥, 钱文文.寒武系海相碳酸盐岩元素地球化学特征及其油气地质意义——以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 天然气地球科学, 2017, 28(7):1085-1095. WANG Zongxin, LÜ Xiuxiang, QIAN Wenwen.Geochemical characteristics of the Cambrian marine carbonate elements and its petroleum geological significance:case study of Xiaoerbulake Formation in Keping area of Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(7):1085-1095. [48] 常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论坪, 2009, 55(1):91-99. CHANG Huajin, CHU Xuelei, FENG Lianjun, et al.Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1):91-99. [49] 刘志波, 刑凤存, 胡华蕊, 等.四川盆地下奥陶统桐梓组白云岩多元成因[J]. 地球科学, 2021, 46(2):583-599. LIU Zhibo, XING Fengcun, HU Huarui, et al.Multi-Origin of dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, western China[J]. Earth Science, 2021, 46(2):583-599. [50] 黄擎宇, 张哨楠, 张斯杨, 等.白云岩结构对储集空间发育的控制作用——以塔里木盆地中央隆起区寒武系-奥陶系白云岩为例[J]. 天然气地球科学, 2014, 25(3):341-350. HUANG Qingyu, ZHANG Shaonan, ZHANG Siyang, et al.Textural control on the development of dolomite reservoir:a study from the Cambrian-Ordovician dolomite, central Tarim Basin, NW China[J]. Natural Gas Geoscience, 2014, 25(3):341-350. [51] BUDD D A.Cenozoic dolomites of carbonate islands:their attributes and origin[J]. Earth-Science Reviews, 1997, 42(1/2):1-47. [52] LOOPE G R, KUMP L R, ARTHUR M A.Shallow water redox conditions from the Permian-Triassic boundary microbialite:the rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351:195-208. [53] 刘策, 曹颖辉, 周波, 等.古城地区中下奥陶统白云岩碳氧同位素特征及成因[J]. 特种油气藏, 2017, 24(2):30-34. LIU Ce, CAO Yinghui, ZHOU Bo, et al.Carbon and oxygen isotope characteristics and genesis of Middle and Lower Ordovician dolomite in Gucheng area[J]. Special Oil & Gas Reservoirs, 2017, 24(2):30-34. [54] 郝乐燃, 杨德彬, 许文良, 等.华北克拉通东北部新太古代晚期岩浆作用和地壳增生:锆石U-Pb-Hf同位素、微量元素和地球化学制约[J]. 岩石学报, 2020, 36(4):1076-1090. HAO Leran, YANG Debin, XU Wenliang, et al.Late Neoarchean magmatism and crustal growth in northeastern North China Craton:constraints from zircon U-Pb-Hf isotope, trace elements and whole rock geochemistry[J]. Acta Petrologica Sinica, 2020, 36(4):1076-1090. [55] KAUFMAN A J, JACOBSEN S B, KNOLL A H.The Vendian record of Sr and C isotopic variations in seawater:implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4):409-430. [56] MAJOR R P, LLOYD R M, LUCIA F J.Oxygen isotope composition of Holocene dolomite formed in a humid hypersaline setting[J]. Geology, 1992, 20(7):586-588. [57] SWART P K, CANTRELL D L, WESTPHAL H, et al.Origin of dolomite in the Arab-D reservoir from the Ghawar field, Saudi Arabia:evidence from petrographic and geochemical constraints[J]. Journal of Sedimentary Research, 2005, 75(3):476-491. [58] VEIZER J, ALA D, AZMY K, et al.87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3):59-88. [59] GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al.The magnesium isotope (δ26Mg)signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149:131-151. [60] 甯濛, 黄康俊, 沈冰.镁同位素在"白云岩问题"研究中的应用及进展[J]. 岩石学报, 2018, 34(12):3690-3708. NING Meng, HUANG Kangjun, SHEN Bing.Applications and advances of the magnesium isotope on the ‘dolomite problem’[J]. Acta Petrologica Sinica, 2018, 34(12):3690-3708. [61] MAVROMATIS V, PEARCE C R, SHIROKOVA L S, et al.Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria[J]. Geochimica et Cosmochimica Acta, 2012, 76:161-174. [62] SHIROKOVA L S, MAVROMATIS V, BUNDELEVA I, et al.Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?[J]. Biogeosciences, 2011, 8(4):6473-6517. |
[1] | 黄亚浩, 汪如军, 文志刚, 张银涛, 崔仕提, 李梦勤, 王彭, 何涛华. 塔里木盆地富满油田深层—超深层油气成藏过程[J]. 石油学报, 2024, 45(6): 947-960. |
[2] | 王清华, 徐振平, 张荣虎, 杨海军, 杨宪彰. 塔里木盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 15-32. |
[3] | 郭秋麟, 黄少英, 卢玉红, 王建, 吴晓智, 陈宁生. 塔里木盆地台盆区下古生界油气系统模拟及资源分布预测[J]. 石油学报, 2023, 44(9): 1459-1471. |
[4] | 陈利新, 贾承造, 姜振学, 苏洲, 杨美纯, 杨博, 邱晨. 塔里木盆地哈拉哈塘地区碳酸盐岩富油模式与主控因素[J]. 石油学报, 2023, 44(6): 948-961. |
[5] | 孔悦, 高晓鹏, 石开波, 刘波, 姜伟民, 于进鑫, 何卿, 吴淳. 塔北地区奥陶系鹰山组斑状白云岩成因及储层意义[J]. 石油学报, 2023, 44(4): 598-611. |
[6] | 申威, 唐军, 信毅, 曹磊, 陈文迪, 唐保勇, 何泽, 齐戈为. 塔里木盆地北部潜山岩溶相带定量表征与储层评价[J]. 石油学报, 2023, 44(3): 471-484. |
[7] | 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征——以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. |
[8] | 马安来, 林会喜, 云露, 邱楠生, 朱秀香, 吴鲜. 塔里木盆地顺托果勒地区奥陶系原油中乙基桥键金刚烷系列的检出及意义[J]. 石油学报, 2022, 43(6): 788-803. |
[9] | 李斌, 张欣, 郭强, 吕海涛, 杨素举, 徐勤琪, 彭军. 塔里木盆地寒武系超深层含油气系统盆地模拟[J]. 石油学报, 2022, 43(6): 804-815. |
[10] | 黄渊, 段太忠, 樊太亮, 刘彦锋, 沈禄银, 张文彪, 李蒙, 张德民. 塔河地区寒武纪碳酸盐岩台地沉积演化史与成因机制——来自地层沉积正演模拟的启示[J]. 石油学报, 2022, 43(5): 617-636. |
[11] | 吴鲜, 李丹, 韩俊, 朱秀香, 黄诚, 曹自成, 常健, 刘雨晨. 塔里木盆地顺托果勒北部地区超深层现今地温场特征[J]. 石油学报, 2022, 43(1): 29-40. |
[12] | 林波, 张旭, 况安鹏, 云露, 刘军, 李宗杰, 曹自成, 徐学纯, 黄诚. 塔里木盆地走滑断裂构造变形特征及油气意义——以顺北地区1号和5号断裂为例[J]. 石油学报, 2021, 42(7): 906-923. |
[13] | 张友, 李强, 郑兴平, 厉玉乐, 沈安江, 朱茂, 熊冉, 朱可丹, 王显东, 齐井顺, 张君龙, 邵冠铭, 佘敏, 宋叙, 孙海航. 塔里木盆地东部古城—肖塘地区寒武纪—奥陶纪台地类型、演化过程及有利储集相带[J]. 石油学报, 2021, 42(4): 447-465. |
[14] | 刘春, 陈世加, 赵继龙, 陈戈, 苏洲, 高乔. 远源油气成藏条件与富集主控因素——以库车坳陷南部斜坡带中生界-新生界油气藏为例[J]. 石油学报, 2021, 42(3): 307-318. |
[15] | 杨海军, 李勇, 唐雁刚, 雷刚林, 周鹏, 周露, 许安明, 郇志鹏, 朱文慧, 陈维力, 胡春雷, 杨敬博. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3): 399-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1