石油学报 ›› 2020, Vol. 41 ›› Issue (12): 1643-1648,1656.DOI: 10.7623/syxb202012016

所属专题: 《石油学报》创刊40周年专辑

• 油田开发 • 上一篇    下一篇

蒸汽吞吐后转降黏化学驱加密井井位优化方法

崔传智1, 郑文乾1, 祝仰文2, 元福卿2, 吴忠维1, 隋迎飞1   

  1. 1. 中国石油大学(华东)非常规油气开发教育部重点实验室 山东青岛 266580;
    2. 中国石油化工股份有限公司胜利油田分公司 山东东营 257000
  • 收稿日期:2020-04-15 修回日期:2020-08-09 出版日期:2020-12-25 发布日期:2021-01-06
  • 通讯作者: 吴忠维,男,1990年5月生,2013年获长江大学学士学位,2020年获中国石油大学(华东)博士学位,现为中国石油大学(华东)博士后,主要从事油气渗流理论、油气田开发技术方面的研究工作。Email:wuzw2020@126.com
  • 作者简介:崔传智,男,1970年1月生,1993年获石油大学(华东)学士学位,2005年获中国地质大学(北京)博士学位,现为中国石油大学(华东)教授、博士生导师,主要从事油气渗流理论、油气田开发技术方面的研究工作。Email:ccz2008@126.com
  • 基金资助:

    国家科技重大专项(2016ZX05011-002-003)和国家自然科学基金面上项目(No.51974343)资助。

A method for optimizing the location of infill wells exploited by viscosity reduction chemical flooding after steam huff and puff stimulation

Cui Chuanzhi1, Zheng Wenqian1, Zhu Yangwen2, Yuan Fuqing2, Wu Zhongwei1, Sui Yingfei1   

  1. 1. MOE Key Laboratory of Unconventional Oil&Gas Development, China University of Petroleum, Shandong Qingdao 266580, China;
    2. Sinopec Shengli Oilfield Company, Shandong Dongying 257000, China
  • Received:2020-04-15 Revised:2020-08-09 Online:2020-12-25 Published:2021-01-06

摘要:

稠油油藏在高轮次蒸汽吞吐后转入降黏化学驱是实现稳产的有效接替生产方式,根据稠油油藏蒸汽吞吐后转降黏化学驱井网加密的需要,以各注入井到生产井的拟见水时间趋于一致为目标,建立了加密井井位优化方法。针对蒸汽吞吐后地层中的含水饱和度分布不均匀问题,在Buckley-Leverett方程的右端项引入了注降黏剂开始时含水饱和度的等效注入量,并考虑降黏化学驱过程中原油黏度时变特征,建立了拟见水时间计算模型,采用时间迭代求解得到拟见水时间;以各注入井到生产井的拟见水时间的方差为目标函数,建立了加密井井位优化模型,采用粒子群算法对加密井井位优化模型进行求解。通过数值模拟验证了加密井井位优化方法的准确性,该研究成果对稠油油藏转降黏化学驱合理部署井网提供了技术支撑。

关键词: 稠油油藏, 降黏化学驱, 拟见水时间, 加密井井位, 粒子群算法

Abstract:

After high cycle steam huff and puff stimulation, heavy oil reservoirs are exploited by viscosity reduction chemical flooding, which is an effective alternative method to achieve stable production. As required by the well pattern thickening in the exploitation of heavy oil reservoirs by viscosity reduction chemical flooding after steam huff and puff stimulation, this paper establishes a method for optimizing the location of infill wells with the goal of adjusting the pseudo water breakthrough time from each injection well to production well to be uniform. In view of the uneven distribution of water saturation in the formation after steam huff and puff stimulation, the injection rate equivalent to water saturation at the beginning of injecting viscosity reducer is introduced to the right-hand member of the Buckley-Leverett equation. As considering the temporal change characteristics of viscosity of crude oil during viscosity reduction chemical flooding, a calculation model is set up for the pseudo water breakthrough time, and is solved by iterative time. Taking the variance of the pseudo water breakthrough time from each injection well to the production well as the objective function, a model is established for optimizing the location of infill wells, and is solved using the particle swarm optimization. This paper verifies the accuracy of the proposed optimization method for the location of infill wells by numerical simulations. The research results provide technical support for the rational well pattern deployment during viscosity reduction chemical flooding in heavy oil reservoirs.

Key words: heavy oil reservoir, viscosity reduction chemical flooding, pseudo water breakthrough time, location of infill wells, particle swarm optimization

中图分类号: