[1] 徐朝阳,孟英峰,魏纳,等.气侵过程井筒压力演变规律实验和模型[J].石油学报,2015,36(1):120-126. XU Chaoyang,MENG Yingfeng,WEI Na,et al.Experimental simulation and numerical modeling of dynamic variations in wellbore pressure during gas-kicks[J].Acta Petrolei Sinica,2015,36(1):120-126. [2] 刘伟,周英操,石希天,等.塔里木油田库车山前超高压盐水层精细控压钻井技术[J].石油钻探技术,2020,48(2):23-28. LIU Wei,ZHOU Yingcao,SHI Xitian,et al.Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa piedmont of the Tarim oilfield[J].Petroleum Drilling Techniques,2020,48(2):23-28. [3] 徐宝昌,孟宇,刘伟.控压钻井井下不可测变量的非线性估计[J].石油学报,2016,37(12):1543-1549. XU Baochang,MENG Yu,LIU Wei.Nonlinear estimation of the down-hole unmeasurable variables in the managed pressure drilling system[J].Acta Petrolei Sinica,2016,37(12):1543-1549. [4] 孙士慧.井底恒压钻井井筒流动模型研究[D].大庆:东北石油大学,2014. SUN Shihui.Research on wellbore flow model for managed pressure drilling at constant bottomhole pressure[D].Daqing:Northeast Petroleum University,2014. [5] 王江帅,李军,何岩峰,等.变梯度控压钻井井控过程中井口回压变化规律[J].石油学报,2021,42(11):1499-1505. WANG Jiangshuai,LI Jun,HE Yanfeng,et al.Variation law of wellhead back pressure under well control during variable gradient managed pressure drilling[J].Acta Petrolei Sinica,2021,42(11):1499-1505. [6] 徐宝昌,周家立,刘伟,等.基于数据驱动的钻井过程气侵工况预测方法[J].石油学报,2019,40(10):1263-1269. XU Baochang,ZHOU Jiali,LIU Wei,et al.Data driven prediction method for gas cut in drilling process[J].Acta Petrolei Sinica,2019,40(10):1263-1269. [7] 宋闯,张晓诚,谢涛,等.渤海"三高"气井环空早期圈闭压力预测[J].石油学报,2022,43(5):694-707. SONG Chuang,ZHANG Xiaocheng,XIE Tao,et al.Prediction of early annular trap pressure of three-high gas wells in Bohai Sea[J].Acta Petrolei Sinica,2022,43(5):694-707. [8] 何淼,柳贡慧,李军,等.多相流全瞬态温度压力场耦合模型求解及分析[J].石油钻探技术,2015,43(2):25-32. HE Miao,LIU Gonghui,LI Jun,et al.Solution and analysis of fully transient temperature and pressure coupling model for multiphase flow[J]. Petroleum Drilling Techniques,2015,43(2):25-32. [9] 王江帅,李军,柳贡慧,等.变压力梯度下钻井环空压力预测[J].石油学报,2020,41(4):497-504. WANG Jiangshuai,LI Jun,LIU Gonghui,et al.Prediction of annulus pressure in variable pressure gradients drilling[J].Acta Petrolei Sinica,2020,41(4):497-504. [10] LAGARIS I E,LIKAS A C,PAPAGEORGIOU D G.Neural-network methods for boundary value problems with irregular boundaries[J].IEEE Transactions on Neural Networks,2000,11(5):1041-1049. [11] YANG Liu,ZHANG Dongkun,KARNIADAKIS G E.Physics-informed generative adversarial networks for stochastic differential equations[J].SIAM Journal on Scientific Computing,2020,42(1):A292-A317. [12] LI Hang.Deep learning for natural language processing:advantages and challenges[J].National Science Review,2018,5(1):24-26. [13] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [14] ALIPANAHI B,DELONG A,WEIRAUCH M T,et al.Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning[J].Nature Biotechnology,2015,33(8):831-838. [15] 李宁,徐彬森,武宏亮,等.人工智能在测井地层评价中的应用现状及前景[J].石油学报,2021,42(4):508-522. LI Ning,XU Binsen,WU Hongliang,et al.Application status and prospects of artificial intelligence in well logging and Formation evaluation[J].Acta Petrolei Sinica,2021,42(4):508-522. [16] 屈俊波.井底恒压法控压钻井波动压力计算与气侵控制研究[D].大庆:东北石油大学,2019. QU Junbo.Research on calculation of surge and swab pressures and control of gas kick in constant bottom hole managed pressure drilling[D].Daqing:Northeast Petroleum University,2019. [17] RAISSI M,PERDIKARIS P,KARNIADAKIS G E.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707. [18] MENG Xuhui,LI Zhen,ZHANG Dongkun,et al.PPINN:parareal physics-informed neural network for time-dependent PDEs[J].Computer Methods in Applied Mechanics and Engineering,2020,370:113250. [19] PANG Guofei,LU Lu,KARNIADAKIS G E.fPINNs:fractional physics-informed neural networks[J].SIAM Journal on Scientific Computing,2019,41(4):A2603-A2626. [20] YANG Liu,MENG Xuhui,KARNIADAKIS G E.B-PINNs:Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J].Journal of Computational Physics,2021,425:109913. [21] WIGHT C L,ZHAO Jia.Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks[J].Communications in Computational Physics,2021,29(3):930-954. [22] BASSENNE M,FU Lin,MANI A.Time-accurate and highly-stable explicit operators for stiff differential equations[J].Journal of Computational Physics,2021,424:109847. [23] MCCLENNY L D,BRAGA-NETO U M.Self-adaptive physics-informed neural networks using a soft attention mechanism[C]//Proceedings of the AAAI 2021 Spring Symposium on Combining Artificial Intelligence and Machine Learning with Physical Sciences.Stanford,USA:CEUR-WS.org,2021. [24] LORDEJANI S N,ABBASI M H,VELMURUGAN N,et al.Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[J].SPE Drilling & Completion,2020,35(4):598-619. [25] LAGE A C V M,TIME R W.Mechanistic model for upward two-phase flow in annuli[R].SPE 63127,2000. [26] HASAN A R,KABIR C S.Study of multiphase flow behavior in vertical wells[J].SPE Production Engineering,1988,3(2):263-272. [27] CAETANO F E.Upward vertical two-phase flow through an annulus[J].Journal of Energy Resources Technology,1986,114(1):14-30. [28] 何淼.控压钻井溢流实时解释理论与控制方法研究[D].北京:中国石油大学(北京),2016. HE Miao.Influx real time interpretation theory and control method in managed pressure drilling[D].Beijing:China University of Petroleum,2016. [29] LU Lu,MENG Xuhui,MAO Zhiping,et al.DeepXDE:a deep learning library for solving differential equations[J].SIAM Review,2021,63(1):208-228. [30] WANG Sifan,YU Xinling,PERDIKARIS P.When and why PINNs fail to train:a neural tangent kernel perspective[J].Journal of Computational Physics,2022,449:110768. [31] Imran K M J,Amelia R I,Syed Q N.Adam optimization algorithm for wide and deep neural network[J].Knowledge Engineering and Data Science,2019,2(1):41-46. [32] LIU D C,NOCEDAL J.On the limited memory BFGS method for large scale optimization[J].Mathematical Programming,1989,45(1-3):503-528. |