石油学报 ›› 2023, Vol. 44 ›› Issue (3): 545-555.DOI: 10.7623/syxb202303012

• 石油工程 • 上一篇    下一篇

用于两相流环空压力预测的自适应物理信息神经网络模型

徐宝昌1, 张学智1, 王雅欣1, 刘伟2, 孟卓然1   

  1. 1. 中国石油大学(北京)信息科学与工程学院 北京 102249;
    2. 中国石油集团工程技术研究院有限公司 北京 102206
  • 收稿日期:2021-12-29 修回日期:2023-02-06 出版日期:2023-03-25 发布日期:2023-04-06
  • 通讯作者: 徐宝昌,男,1974年8月生,2005年获北京航空航天大学博士学位,现为中国石油大学(北京)信息科学与工程学院副教授,主要从事钻井工程自动化、复杂系统建模与先进控制、多传感器信息融合与软测量技术方面的研究工作。Email:xbcyl@cup.edu.cn
  • 作者简介:徐宝昌,男,1974年8月生,2005年获北京航空航天大学博士学位,现为中国石油大学(北京)信息科学与工程学院副教授,主要从事钻井工程自动化、复杂系统建模与先进控制、多传感器信息融合与软测量技术方面的研究工作。Email:xbcyl@cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFA0708304)和中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项(ZLZX2020-03)资助。

Self-adaptive physical information neural network model for prediction of two-phase flow annulus pressure

Xu Baochang1, Zhang Xuezhi1, Wang Yaxin1, Liu Wei2, Meng Zhuoran1   

  1. 1. College of Information Science and Engineering, China University of Petroleum, Beijing 102249, China;
    2. CNPC Engineering Technology R & D Company Limited, Beijing 102206, China
  • Received:2021-12-29 Revised:2023-02-06 Online:2023-03-25 Published:2023-04-06

摘要: 石油勘探开发不断面向着更为复杂多变的地层,为应对深层复杂油气藏钻探过程中存在的气侵现象,需要采用控压钻井技术(MPD)以防止气侵导致的井喷事故。其中,通过求解气侵工况下两相流井筒水力学偏微分方程组(PDEs)来准确预测井底压力是制定控制方案的关键。采用基于自适应物理信息神经网络(PINN)方法对两相流井筒环空压力进行预测:首先,根据井筒机理设计全连接神经网络,用于拟合训练数据样本的分布;其次,将已知的两相流井筒模型的偏微分方程以微分形式约束条件融入神经网络的损失函数中,此外,采用可训练的自适应权重提升神经网络模型精度,使网络在训练过程中着重关注边界点、初始点等求解困难区域;最后采用Adam算法对网络参数和微分方程的权重进行优化,并使用L-BFGS算法对网络参数进一步优化。随机选取有限差分法在稠密网格情况下求解井筒水力学模型所得的部分数据作为实验数据集。实验结果表明,相较于常规的物理信息神经网络和传统的有限差分法,用于两相流环空压力预测的自适应物理信息神经网络模型性能更佳。

关键词: 物理信息神经网络, 偏微分方程, 井筒水力学, 压力预测, 自适应

Abstract: With the deepening of oil exploration and development in more and more complex and variable formations, Managed Pressure Drilling (MPD)has to be used for preventing blowouts caused by gas intrusion during drilling in deep and complex reservoirs. Specifically, accurate prediction of bottomhole pressure by solving partial differential equations (PDEs)for the two-phase flowing wellbore under gas intrusion conditions is the key to develop a control scheme. A method based on an adaptive Physics-Informed Neural Networks (PINN)is used to predict the two-phase flow wellbore annulus pressure. First, a fully connected neural network is designed based on the wellbore mechanism, so as to fit the distribution of training data samples; second, the known partial differential equations of the two-phase flow wellbore model are incorporated into the loss function of the neural network as differential constraints. In addition, trainable adaptive weights are used to enhance the accuracy of the neural network model, so that the network can put the focus on boundary points, initial points, and other difficult regions of solution during the training process; finally, the Adam algorithm is used to optimize the network parameters and the weights of differential equations, and the L-BFGS algorithm is used to further optimize the network parameters. Some data obtained from solving the wellbore hydraulics model by finite difference method in the dense grid case are randomly selected as the experimental data set. The experimental results show that the self-adaptive physical information neural network model proposed for prediction of two-phase flow annulus pressure has better performance than the conventional physical information neural network and the traditional finite difference method.

Key words: physical information neural network, partial differential equation, wellbore hydraulics, pressure prediction, self-adaptive

中图分类号: