石油学报 ›› 2024, Vol. 45 ›› Issue (7): 1141-1151.DOI: 10.7623/syxb202407009

• 石油工程 • 上一篇    

高压注空气驱油过程中油气爆炸风险分析及特性实验

黄丽娟1,2, 陈志伟1,2, 李宗法1,2, 周小淞3, 张贺源2, 廖广志4, 任韶然5   

  1. 1. 长江大学油气钻采工程湖北省重点实验室 湖北武汉 430100;
    2. 长江大学石油工程学院 湖北武汉 430100;
    3. 中国石油吐哈油田公司采油工艺研究院 新疆鄯善 838200;
    4. 中国石油勘探开发研究院 北京 100083;
    5. 中国石油大学(华东)石油工程学院 山东青岛 266580
  • 收稿日期:2023-09-23 修回日期:2024-04-14 发布日期:2024-08-06
  • 通讯作者: 李宗法,男,1994年8月生,2023年获中国石油大学(华东)油气田开发工程专业博士学位,现为长江大学石油工程学院讲师,主要从事注气提高采收率方面的研究工作。Email:lizf@yangtzeu.edu.cn
  • 作者简介:黄丽娟,女,1995年2月生,2022年获中国石油大学(华东)油气田开发工程专业博士学位,现为长江大学石油工程学院讲师,主要从事注空气采油燃爆安全方面的研究工作。Email:huanglijuan@yangtzeu.edu.cn
  • 基金资助:
    油气钻采工程湖北省重点实验室开放基金项目(YQZC202405)、长江大学科研发展基金项目、长江大学大学生创新创业训练计划项目(2022008)和湖北省自然科学基金青年项目(2024AFB322)资助。

Risk analysis and characteristic experiment of oil and gas explosion during high-pressure air injection process for oil recovery

Huang Lijuan1,2, Chen Zhiwei1,2, Li Zongfa1,2, Zhou Xiaosong3, Zhang Heyuan2, Liao Guangzhi4, Ren Shaoran5   

  1. 1. Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Hubei Wuhan 430100, China;
    2. School of Petroleum Engineering, Yangtze University, Hubei Wuhan 430100, China;
    3. Oil Production Technology Research Institute, PetroChina Tuha Oilfield Company, Xinjiang Shanshan 838200;
    4. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    5. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China
  • Received:2023-09-23 Revised:2024-04-14 Published:2024-08-06

摘要: 注空气驱油是一项经济有效的提高采收率技术,同时油气—空气混合物的防爆安全备受关注。目前爆炸风险评估多是基于低温低压条件下油气爆炸特性进行的,缺乏针对实际油田高温高压工况下的研究。采用自行研制的高温高压油气爆炸实验装置,模拟井筒注空气工况,研究了压力、密度、气体组分对天然气爆炸极限的影响。实验结果表明,100 ℃时压力从5 MPa升高至15 MPa,爆炸极限范围扩大了10.25 %,爆炸风险增加。通过进行稀油和稠油的自燃爆实验表明,高温导致轻质组分蒸发,稀油和稠油的自燃爆温度随密度增加均升高,在15 MPa条件下,自燃爆温度可低至190~207 ℃。针对不同注空气工艺流程和油气爆炸机理进行了爆炸风险分析,当注气井压力低于油藏压力时,油气回流进入井筒与空气混合是发生爆炸的主要原因;生产井中,由于原油氧化不完全或气窜导致氧浓度超过临界氧含量是导致爆炸的最重要因素之一。最后,基于实验和理论分析结果,提出了不同注空气工艺过程中有效的井筒防爆措施。

关键词: 注空气, 油气爆炸, 自燃爆, 高温高压, 密度

Abstract: Air injection displacement is an economically effective enhanced oil recovery technology, and the explosion-proof safety of hydrocarbon and air mixtures also attracts much concern. At present, explosion risk assessment is carried out mostly based on the characteristics of oil and gas explosion under low temperature and pressure, and there is less research on actual high-temperature and high-pressure conditions in oil fields. Using a self-developed experimental device for high-temperature and high-pressure oil and gas explosion, this paper simulates the working conditions of air injection in wellbore, and studies the effects of pressure, density, and gas composition on the explosion limit of natural gas. The experiment results show that when the pressure increases from 5 MPa to 15 MPa at 100 ℃, the explosion limit range can expand by 10.25 %, accompanied with increased explosion risks. In the experiments on auto ignition explosion of light and heavy oil, the evaporation of light components is caused by high temperature. The auto ignition explosion temperature of light oil and heavy oil increases with the increase of density; at 15 MPa, the auto ignition explosion temperature can be as low as 190-207 ℃ The explosion risks are analyzed for different air injection processes and hydrocarbon explosion mechanisms. When the gas injection well pressure is lower than the reservoir pressure, the mixture of hydrocarbons flowing back into the wellbore and air is mainly contributed to the explosion. In production wells, incomplete oxidation of crude oil or gas breakthrough leads to an oxygen concentration exceeding the critical oxygen content, which is the most important factor that causes explosions. Finally, based on experimental and theoretical analysis results, the paper proposes effective wellbore explosion-proof measures for different air injection processes.

Key words: air injection, oil and gas explosion, auto ignition explosion, high temperature and high pressure, density

中图分类号: