[1] 国家能源局. 2024年全国油气勘探开发十大标志性成果[EB/OL].(2025-01-20)[2025-02-25].https://www.nea.gov.cn/20250120/f16a9ad91ce8459d9fc03d1d2869a588/c.html. National Energy Administration.Top ten landmark achievements in national oil & gas exploration and development in 2024[EB/OL].(2025-01-20)[2025-02-25].https://www.nea.gov.cn/20250120/f16a9ad91ce8459d9fc03d1d2869a588/c.html. [2] 赵喆, 徐旺林, 赵振宇, 等.鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J].石油勘探与开发, 2024, 51(2):234-247. ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al.Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2024, 51(2):234-247. [3] LI Song, QIN Yong, TANG Dazhen, et al.A comprehensive review of deep coalbed methane and recent developments in China[J].International Journal of Coal Geology, 2023, 279:104369. [4] ZHANG Kun, MENG Zhaoping, LIU Shimin, et al.Laboratory investigation on pore characteristics of coals with consideration of various tectonic deformations[J].Journal of Natural Gas Science and Engineering, 2021, 91:103960. [5] 侯锦秀, 王宝俊, 张玉贵, 等.不同煤级煤的微孔介孔演化特征及其成因[J].煤田地质与勘探, 2017, 45(5):75-81. HOU Jinxiu, WANG Baojun, ZHANG Yugui, et al.Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J].Coal Geology & Exploration, 2017, 45(5):75-81. [6] MASTALERZ M, DROBNIAK A, STRAPOC ' D, et al.Variations in pore characteristics in high volatile bituminous coals:implications for coal bed gas content[J].International Journal of Coal Geology, 2008, 76(3):205-216. [7] SING K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry, 1985, 57(4):603-619. [8] SONG Yu, JIANG Bo, LI Ming, et al.A review on pore-fractures in tectonically deformed coals[J].Fuel, 2020, 278:118248. [9] 朱悦雯, 尚福华, 麻书玮, 等.不同煤级煤孔隙结构的非均质性及其影响因素[J].煤炭科学技术, 2025, 53(增刊1):173-182. ZHU Yuewen, SHANG Fuhua, MA Shuwei, et al.Heterogeneity and influencing factors of pore structure in different coal ranks[J].Coal Science and Technology, 2025, 53(S1):173-182. [10] 喻廷旭, 汤达祯, 许浩, 等.柳林矿区不同煤岩类型煤的孔隙特征[J].煤炭科学技术, 2013, 41(增刊2):362-366. YU Tingxu, TANG Dazhen, XU Hao, et al.Pore characteristics of different coal types by lustre in Liulin mining area[J].Coal Science and Technology, 2013, 41(S2):362-366. [11] 赵明恩, 梁国栋, 杨佳佳, 等.宏观煤岩类型和煤体结构控制下的孔隙结构特征研究[J].中国煤炭地质, 2024, 36(10):1-5. ZHAO Ming’en, LIANG Guodong, YANG Jiajia, et al.Study on pore structure characteristics under the control of macrolithotype and coal structure[J].Coal Geology of China, 2024, 36(10):1-5. [12] 曲闯, 左宇军, 于迪, 等.王庄煤矿不同破坏类型煤体结构差异性及其对瓦斯吸附性能的研究[J].煤矿开采, 2017, 22(6):88-91. QU Chuang, ZUO Yujun, YU Di, et al.Study on coal tectonic difference of different failure mode of Wangzhuang coal mine and it’s gas adsorption [J].Coal Mining Technology, 2017, 22(6):88-91. [13] MATHEWS J P, CHAFFEE A L.The molecular representations of coal-a review[J].Fuel, 2012, 96:1-14. [14] 姚素平, 焦堃, 张科, 等.煤纳米孔隙结构的原子力显微镜研究[J].科学通报, 2011, 56(22):1820-1827. YAO Suping, JIAO Kun, ZHANG Ke, et al.An atomic force microscopy study of coal nanopore structure[J].Chinese Science Bulletin, 2011, 56(22):1820-1827. [15] FENG Bo, BHATIA S K.Variation of the pore structure of coal chars during gasification[J].Carbon, 2003, 41(3):507-523. [16] LIU Yu, ZHU Yanming, CHEN Shangbin.Effects of chemical composition, disorder degree and crystallite structure of coal macromolecule on nanopores (0.4-150 nm)in different rank naturally-matured coals[J].Fuel, 2019, 242:553-561. [17] LIU Yu, ZHU Yanming, LI Wu, et al.Ultra micropores in macromolecular structure of subbituminous coal vitrinite[J].Fuel, 2017, 210:298-306. [18] 郭晓娇, 王雷, 姚仙洲, 等.深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例[J].石油实验地质, 2025, 47(1):17-26. GUO Xiaojiao, WANG Lei, YAO Xianzhou, et al.Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment:a case study of the M area in the eastern Ordos Basin[J].Petroleum Geology & Experiment, 2025, 47(1):17-26. [19] 胡鑫, 姚卫江, 胡正舟, 等.准噶尔盆地白家海地区西山窑组深部煤岩储层孔隙结构表征及发育主控因素[J].中国石油大学学报(自然科学版), 2024, 48(4):12-23. HU Xin, YAO Weijiang, HU Zhengzhou, et al.Pore structure characterization and main control factors of deep coal reservoir of Xishanyao Formation in Baijiahai area, Junggar Basin[J].Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(4):12-23. [20] 赵伟波, 刘洪林, 王怀厂, 等.煤层微观孔隙特征及沉积环境对孔隙结构的控制作用——以鄂尔多斯盆地8号煤层为例[J].煤炭科学技术, 2024, 52(6):142-154. ZHAO Weibo, LIU Honglin, WANG Huaichang, et al.Microscopic pore characteristics of coal seam and the controlling effect of sedimentary environment on pore structure in No.8 coal seam of the Ordos Basin[J].Coal Science and Technology, 2024, 52(6):142-154. [21] 乔雨, 宋党育, 刘惟庆, 等.鄂尔多斯盆地东缘山西组煤系页岩孔隙结构特征及其演化规律研究[J].河南理工大学学报(自然科学版), 2024, 43(5):53-66. QIAO Yu, SONG Dangyu, LIU Weiqing, et al.Pore structure characteristics and evolution laws of coal-measure shale in the Shanxi Formation, eastern the Ordos Basin[J].Journal of Henan Polytechnic University (Natural Science), 2024, 43(5):53-66. [22] 付金华, 董国栋, 周新平, 等.鄂尔多斯盆地油气地质研究进展与勘探技术[J].中国石油勘探, 2021, 26(3):19-40. FU Jinhua, DONG Guodong, ZHOU Xinping, et al.Research progress of petroleum geology and exploration technology in Ordos Basin[J].China Petroleum Exploration, 2021, 26(3):19-40. [23] 牛海青.鄂尔多斯盆地煤层气富集成藏规律研究[D].青岛:中国石油大学(华东), 2010. NIU Haiqing.The enriching and reservoiring laws of the coal bed methane in Ordos Basin[D].Qingdao:China University of Petroleum, 2010. [24] 牛小兵, 喻健, 徐旺林, 等.鄂尔多斯盆地上古生界煤岩气成藏地质条件及勘探方向[J].天然气工业, 2024, 44(10):33-50. NIU Xiaobing, YU Jian, XU Wanglin, et al.Reservoir-forming geological conditions and exploration directions of Upper Paleozoic coalrock gas in the Ordos Basin[J].Natural Gas Industry, 2024, 44(10):33-50. [25] 费世祥, 崔越华, 李小锋, 等.鄂尔多斯盆地中、东部深层煤岩气水平井高效开发主控因素[J].石油与天然气地质, 2025, 46(1):273-287. FEI Shixiang, CUI Yuehua, LI Xiaofeng, et al.Main factors controlling the efficient production of horizontal wells for deep coal-rock gas in the eastern and central Ordos Basin[J].Oil & Gas Geology, 2025, 46(1):273-287. [26] 中国煤炭工业协会.煤的工业分析方法:GB/T 212—2008[S].北京:中国标准出版社, 2008. China National Coal Association.Proximate analysis of coal:GB/T 212-2008[S].Beijing:Standards Press of China, 2008. [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤的元素分析:GB/T 31391—2015[S].北京:中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China.Ultimate analysis of coal:GB/T 31391-2015[S].Beijing:Standards Press of China, 2015. [28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤的镜质体反射率显微镜测定方法:GB/T 6948—2008[S].北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China.Method of determining microscopically the reflectance of vitrinite in coal:GB/T 6948-2008[S].Beijing:Standards Press of China, 2009. [29] 牛小兵, 范立勇, 闫小雄, 等.鄂尔多斯盆地煤岩气富集条件及资源潜力[J].石油勘探与开发, 2024, 51(5):972-985. NIU Xiaobing, FAN Liyong, YAN Xiaoxiong, et al.Enrichment conditions and resource potential of coal-rock gas in Ordos Basin, NW China [J].Petroleum Exploration and Development, 2024, 51(5):972-985. [30] 国家煤炭工业局.煤的挥发分产率分级:MT/T 849—2000[S].北京:中国煤炭工业出版社, 2001. State Bureau of Coal Industry.Classification for volatile matter of coal:MT/T 849-2000[S].Beijing:China Coal Industry Publishing House, 2001. [31] 国家市场监督管理总局, 中国国家标准化管理委员会.煤炭质量分级第1部分:灰分:GB/T 15224.1—2018[S].北京:中国标准出版社, 2018. State Administration for Market Regulation, Standardization Administration of the People’s Republic of China.Classification for quality of coal—Part 1:Ash:GB/T 15224.1-2018[S].Beijing:Standards Press of China, 2018. [32] 国家煤炭工业局.煤的全水分分级:MT/T 850—2000[S].北京:煤炭工业出版社, 2000. State Bureau of Coal Industry.Classification for total moisture in coal:MT/T 850-2000[S].Beijing:China Coal Industry Publishing House, 2000. [33] 中国煤炭工业协会.中国煤炭分类:GB/T 5751—2009[S].北京:中国标准出版社, 2010. China National Coal Association.Chinese classification of coals:GB/T 5751-2009[S].Beijing:Standards Press of China, 2010. [34] 谢克昌.煤结构与反应性[M].北京:科学出版社, 2002. XIE Kechang.Coal structure and its reactivity[M].Beijing:Science Press, 2002. [35] 国家市场监督管理总局, 国家标准化管理委员会.岩石毛管压力曲线的测定:GB/T 29171—2023[S].北京:中国标准出版社, 2023. State Administration for Market Regulation, National Standardization Administration.Rock capillary pressure measurement:GB/T 29171-2023[S].Beijing:Standards Press of China, 2023. [36] CHEN Xiaozhen, LI Meifen, ZENG Fangui.Control of chemical structure on the characteristics of micropore structure in medium-rank coals[J].Fuel Processing Technology, 2022, 228:107162. [37] SONG Yu, JIANG Bo, MATHEWS J P, et al.Structural transformations and hydrocarbon generation of low-rank coal (vitrinite)during slow heating pyrolysis[J].Fuel Processing Technology, 2017, 167:535-544. [38] WANG Xiaoling, WANG Shaoqing, ZHAO Yungang, et al.Construction and verification of vitrinite-rich and inertinite-rich Zhundong coal models at the aggregate level:new insights from the spatial arrangement and thermal behavior perspective[J].RSC Advances, 2023, 13(11):7569-7584. [39] KAWASHIMA H, YAMASHITA Y, SAITO I.Studies on structural changes of coal density-separated components during pyrolysis by means of solid-state 13C NMR spectra[J].Journal of Analytical and Applied Pyrolysis, 2000, 53(1):35-50. [40] ERDENETSOGT B O, LEE I, LEE S K, et al.Solid-state C-13 CP/MAS NMR study of Baganuur coal, Mongolia:Oxygen-loss during coalification from lignite to subbituminous rank[J].International Journal of Coal Geology, 2010, 82(1/2):37-44. [41] WANG Shaoqing, TANG Yuegang, SCHOBERT H H, et al.FTIR and 13C NMR investigation of coal component of Late Permian coals from southern China[J].Energy & Fuels, 2011, 25(12):5672-5677. [42] CHEN Yanyan, MASTALERZ M, SCHIMMELMANN A.Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J].International Journal of Coal Geology, 2012, 104:22-33. [43] 李霞, 曾凡桂, 王威, 等.低中煤级煤结构演化的FTIR表征[J].煤炭学报, 2015, 40(12):2900-2908. LI Xia, ZENG Fangui, WANG Wei, et al.FTIR characterization of structural evolution in low-middle rank coals[J].Journal of China Coal Society, 2015, 40(12):2900-2908. [44] 陈萍, 唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报, 2001, 26(5):552-556. CHEN Ping, TANG Xiuyi.The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J].Journal of China Coal Society, 2001, 26(5):552-556. [45] WANG Tao, TIAN Fenghua, DENG Ze, et al.The characteristic development of micropores in deep coal and its relationship with adsorption capacity on the eastern margin of the Ordos Basin, China[J].Minerals, 2023, 13(3):302. [46] THOMMES M, KANEKO K, NEIMARK A V, et al.Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J].Pure and Applied Chemistry, 2015, 87(9/10):1051-1069. [47] 李阳, 张玉贵, 张浪, 等.基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J].煤炭学报, 2019, 44(4):1188-1196. LI Yang, ZHANG Yugui, ZHANG Lang, et al.Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption[J].Journal of China Coal Society, 2019, 44(4):1188-1196. [48] WANG Zhenyang, CHENG Yuanping, ZHANG Kaizhong, et al.Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption:an experimental study[J].Fuel, 2018, 232:495-505. [49] TENG Juan, MASTALERZ M, HAMPTON L.Maceral controls on porosity characteristics of lithotypes of Pennsylvanian high volatile bituminous coal:example from the Illinois Basin[J].International Journal of Coal Geology, 2017, 172:80-94. [50] LIU Tong, LIN Baiquan, SANG Shuxun, et al.Control mechanisms of macromolecular compositions and structures of coals on the evolution of nanopores during coalification[J].Energy & Fuels, 2024, 38(14):13002-13018. [51] VRANJES-WESSELY S, MISCH D, ISSA I, et al.Nanoscale pore structure of Carboniferous coals from the Ukrainian Donets Basin:a combined HRTEM and gas sorption study[J].International Journal of Coal Geology, 2020, 224:103484. [52] 张松航, 汤达祯, 唐书恒, 等.鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J].地质学报, 2008, 82(10):1341-1349. ZHANG Songhang, TANG Dazhen, TANG Shuheng, et al.The characters of coal beds micropores and its influence factors in the eastern margin of Ordos Basin[J].Acta Geologica Sinica, 2008, 82(10):1341-1349. [53] WANG Tao, DENG Ze, HU Haiyan, et al.Pore structure of deep coal of different ranks and its effect on coalbed methane adsorption[J].International Journal of Hydrogen Energy, 2024, 59:144-158. [54] 李文华, 白向飞, 杨金和, 等.烟煤镜质组平均最大反射率与煤种之间的关系[J].煤炭学报, 2006, 31(3):342-345. LI Wenhua, BAI Xiangfei, YANG Jinhe, et al.Correspondence between mean maximum reflectance of vitrinite and classification of bituminous coals[J].Journal of China Coal Society, 2006, 31(3):342-345. [55] 李增学.煤地质学[M].北京:地质出版社, 2009. LI Zengxue.Coal geology[M].Beijing:Geological Publishing House, 2009. [56] 李明, 姜波, 秦勇, 等.构造煤中矿物质对孔隙结构的影响研究[J].煤炭学报, 2017, 42(3):726-731. LI Ming, JIANG Bo, QIN Yong, et al.Analysis of mineral effect on coal pore structure of tectonically deformed coal[J].Journal of China Coal Society, 2017, 42(3):726-731. |