石油学报 ›› 2020, Vol. 41 ›› Issue (3): 348-362,371.DOI: 10.7623/syxb202003009

• 油田开发 • 上一篇    下一篇

基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟

齐宁1, 陈国彬1, 李振亮1, 梁冲2, 何龙3   

  1. 1. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    2. 中国石油集团科学技术研究院有限公司 北京 100083;
    3. 中国石油化工股份有限公司西北油田分公司 新疆乌鲁木齐 830011
  • 收稿日期:2019-01-14 修回日期:2019-11-11 出版日期:2020-03-25 发布日期:2020-04-03
  • 通讯作者: 陈国彬,男,1994年4月生,2013年获中国石油大学(华东)学士学位,现为中国石油大学(华东)油气田开发工程专业硕士研究生,主要从事酸化酸压领域的研究工作。Email:chenguobin@s.upc.edu.cn
  • 作者简介:齐宁,男,1980年8月生,2002年获石油大学(华东)学士学位,2007年获中国石油大学(华东)博士学位,现为中国石油大学(华东)副教授,主要从事采油工程方面的教学与研究工作。Email:qining@upc.edu.cn
  • 基金资助:

    国家科技重大专项(2017ZX005030-005)、山东省自然科学基金项目(ZR2017ME003)和中央高校自主创新科技专项(19CX02067A)资助。

Numerical simulation of large-scale acidification in fractured carbonate reservoirs based on a step-by-step algorithm

Qi Ning1, Chen Guobin1, Li Zhenliang1, Liang Chong2, He Long3   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    2. CNPC Science and Technology Research Institute Co., Ltd., Beijing 100083, China;
    3. Sinopec Northwest Oilfield Company, Xinjiang Urumqi 830011, China
  • Received:2019-01-14 Revised:2019-11-11 Online:2020-03-25 Published:2020-04-03

摘要:

碳酸盐岩储层非均质性强,基质酸化时常形成酸蚀蚓孔。蚓孔作为优势通道能够有效沟通裂缝系统、增加酸化作用距离。限于计算精度和模型收敛条件,多数学者往往在厘米尺度对裂缝性地层酸化进行小规模研究。但酸化尤其是深部酸化的作用距离通常在米级,油田现场亟需一种适合大尺度地层的高效酸化模拟方法。基于经典的双尺度连续模型,利用离散裂缝网络模型,求解了径向流裂缝性地层蚓孔扩展问题;提出的分步算法可忽略近井已酸化区域的溶蚀扩孔过程,仅需考虑不同酸化阶段对蚓孔产生实际影响的裂缝,并可追踪主蚓孔的生长动态。研究表明,有限的计算域边界将为模拟结果带来较大误差,在酸化区域外设置一定的渗流阻力区,可以有效模拟蚓孔在无限大地层中的生长过程;同时流场分析表明,裂缝周围存在局部控制域,控制域尺寸与裂缝在酸液注入方向上的投影有关,与裂缝位置无关;蚓孔的生长轨迹由控制域覆盖蚓孔尖端的裂缝决定,与其他裂缝无关;入口压力和主蚓孔位置的酸液浓度与注酸时间的对数成线性关系;提出的分步算法具有较高的计算效率,可逐步模拟蚓孔在大尺度、复杂裂缝地层中的生长过程。

关键词: 蚓孔扩展, 双尺度连续模型, 离散裂缝网络模型, 分步算法, 大尺度地层酸化, 裂缝性碳酸盐岩油藏

Abstract:

Carbonate reservoirs are highly heterogeneous, and acid-etched wormholes are often formed in matrix due to acidification. As the dominant channels, wormholes can effectively communicate the fracture systems and increase the effective distance of acidification. Limited by computational accuracy and convergence conditions of models, most scholars often conduct small-scale research of acidification in fractured formations on the centimeter scale. However, the effective distance of acidification, especially the deep acidification, is usually on the meter level. Therefore, a high-efficiency simulation method of acidification applicable for large-scale formations is needed in the oilfield. Based on the classical two-scale continuum model, the study solves the problem of wormhole propagation in radial flow fractured formations using the discrete fracture network model. The proposed step-by-step algorithm ignores the process of dissolution and reaming in the near-borehole acidified area. It only needs to consider the fractures that actually affect the wormholes in different acidification stages, and track the growth dynamics of the dominant wormholes. Studies have shown that the finite boundary of computational domain will cause a big error in the simulation results, and the growth process of wormholes in infinite formations can be effectively simulated by setting a certain seepage resistance zone outside the acidification zone. Moreover, the flow field analysis shows that there is a local control domain around the fracture, and the size of the control domain has a relation with the projection of fracture in the direction of acid injection, and has nothing to do with the fracture position. The growth trajectory of wormholes is determined by the fractures whose control domains cover the tips of wormholes, unrelated to other fractures. There is a linear relationship between the inlet pressure and the acid concentration of the dominant wormholes and the logarithm of the acid injection time. The proposed step-by-step algorithm has high computational efficiency and can progressively simulate the growth process of wormholes in large-scale and complex fracture formations.

Key words: wormhole propagation, two-scale continuum model, discrete fracture network model, step-by-step algorithm, acidification of large scale formations, fractured carbonate reservoir

中图分类号: