[1] 杨起,韩德馨.中国煤田地质学:上册煤田地质基础理论[M].北京:煤炭工业出版社,1979.
YANG Qi,HAN Dexin.Coal geology of China:volume 1,basic theory of coal geology[M].Beijing:China Coal Industry Publishing House,1979.
[2] 皇甫玉慧,康永尚,邓泽,等.低煤阶煤层气成藏模式和勘探方向[J].石油学报,2019,40(7):786-797.
HUANGFU Yuhui,KANG Yongshang,DENG Ze,et al.Low coal rank coalbed methane accumulation model and exploration direction[J].Acta Petrolei Sinica,2019,40(7):786-797.
[3] 陈振宏,孟召平,曾良君.准噶尔东南缘中低煤阶煤层气富集规律及成藏模式[J].煤炭学报,2017,42(12):3203-3211.
CHEN Zhenhong,MENG Zhaoping,ZENG Liangjun.Formation mechanism and enrichment patterns of middle-low rank coalbed methane in Southern Junggar Basin,China[J].Journal of China Coal Society,2017,42(12):3203-3211.
[4] 郭晋宁,李猛,邵龙义.青海聚乎更矿区煤层气富集条件[J].中国煤炭地质,2011,23(6):18-22.
GUO Jinning,LI Meng,SHAO Longyi.CBM enrichment conditions in Juhugeng mine area,Qinghai[J].Coal Geology of China,2011,23(6):18-22.
[5] 康永尚,皇甫玉慧,张兵,等.含煤盆地深层"超饱和"煤层气形成条件[J].石油学报,2019,40(12):1426-1438.
KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al.Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J].Acta Petrolei Sinica,2019,40(12):1426-1438.
[6] 孙钦平,王生维,田文广,等.二连盆地吉尔嘎朗图凹陷低煤阶煤层气富集模式[J].天然气工业,2018,38(4):59-66.
SUN Qinping,WANG Shengwei,TIAN Wenguang,et al.Accumulation patterns of low-rank coalbed methane gas in the Jiergalangtu sag of the Erlian Basin[J].Natural Gas Industry,2018,38(4):59-66.
[7] 王安民.青海聚乎更矿区煤系气耦合成藏条件研究[D].北京:中国矿业大学(北京),2018.
WANG Anmin.The study on coupling accumulation conditions of coal measure gases in Juhugeng mining area of Qinghai province,Northwest China[D].Beijing:China University of Mining & Technology,2018.
[8] 邵龙义,文怀军,李永红,等.青海省天峻县木里煤田煤层气有利区块的多层次模糊数学评判[J].地质通报,2011,30(12):1896-1903.
SHAO Longyi,WEN Huaijun,LI Yonghong,et al.Assessment of favorable areas for coalbed methane resources exploration in the Muli coalfield of Qinghai province based on multi-layered fuzzy mathematics[J].Geological Bulletin of China,2011,30(12):1896-1903.
[9] 潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质,2009,36(1):1-28.
PAN Guitang,XIAO Qinghui,LU Songnian,et al.Subdivision of tectonic units in China[J].Geology in China,2009,36(1):1-28.
[10] 邵龙义,杨致宇,李永红,等.青海木里聚乎更天然气水合物潜在区中侏罗世岩相古地理特征[J].现代地质,2015,29(5):1061-1072.
SHAO Longyi,YANG Zhiyu,LI Yonghong,et al.Lithofacies palaeogeography of the Middle Jurassic in the Juhugeng gas hydrate potential area in Muli,Qinghai province[J].Geoscience,2015,29(5):1061-1072.
[11] 蒋艾林.青海木里煤田三露天煤系页岩气形成地质条件分析[D].北京:中国矿业大学(北京),2016.
JIANG Ailin.Analysis on formation conditions of shale gas coal measures in Sanlutian of Muri coalfield,Qinghai province[D].Beijing:China University of Mining & Technology,2016.
[12] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.煤的镜质体反射率显微镜测定方法:GB/T 6948-2008[S].北京:中国标准出版社,2009.
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of China.Method of determining microscopically the reflectance of vitrinite in coal:GB/T 6948-2008[S].Beijing:China Standard Press,2009.
[13] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.煤的显微组分组和矿物测定方法:GB/T 8899-2013[S].北京:中国标准出版社,2014.
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of China.Determination of maceral group composition and minerals in coal:GB/T 8899-2013[S].Beijing:China Standard Press,2014.
[14] 国家标准化管理委员会.气体吸附BET法测定固态物质比表面积:GB/T 19587-2004[S].北京:中国标准出版社,2005.
Standardization Administration of China.Determination of the specific surface area of solids by gas adsorption using the BET method:GB/T 19587-2004[S].Beijing:China Standard Press,2005.
[15] SING K S W,EVERETT D H,HAUL R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57(4):603-619.
[16] DE BOER J H.The structure and properties of porous materials[M]//EVERETT D H,STONE F S.Proceedings of the Tenth Symposium of the Colston Research Society Held in the University of Bristol.London:Butterworths,1958:68-94.
[17] 陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
CHEN Ping,TANG Xiuyi.The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J].Journal of China Coal Society,2001,26(5):552-556.
[18] SHEARER J C,STAUB J R,MOORE T A.The conundrum of coal bed thickness:a theory for stacked mire sequences[J].The Journal of Geology,1994,102(5):611-617.
[19] JERRETT R M,DAVIES R C,HODGSON D M,et al.The significance of hiatal surfaces in coal seams[J].Journal of the Geological Society,2011,168(3):629-632.
[20] 李鑫,庄新国,周继兵,等.准东煤田中部矿区西山窑组巨厚煤层煤相分析[J].地质科技情报,2010,29(5):84-88.
LI Xin,ZHUANG Xinguo,ZHOU Jibing,et al.Coal facies analysis of thick coal seam of middle Jurassic Xishanyao Formation in the middle part of eastern Junggar coal field,Xinjiang[J].Geological Science and Technology Information,2010,29(5):84-88.
[21] 李晶,庄新国,周继兵,等.新疆准东煤田西山窑组巨厚煤层煤相特征及水进水退含煤旋回的判别[J].吉林大学学报:地球科学版,2012,42(S2):104-114.
LI Jing,ZHUANG Xinguo,ZHOU Jibing,et al.Coal facies characteristic and identification of transgressive/regressive coal-bearing cycles in a thick coal seam of Xishanyao Formation in Eastern Junggar coalfield,Xinjiang[J].Journal of Jilin University:Earth Science Edition,2012,42(S2):104-114.
[22] DIESSEL C F K.On the correlation between coal facies and depositional environments[C]//Proceedings of the 20th Symposium,Department of Geology,University of Newcastle.Australia:The University of Newcastle,1986:19-22.
[23] CALDER J H,GIBLING M R,MUKHOPADHYAY P K.Peat formation in a Westphalian B piedmont setting,Cumberland Basin,Nova Scotia:implications for the maceral-based interpretation of rheotrophic and raised paleomires[J].Bulletin de la Société Géologique de France,1991,162(2):283-298.
[24] 张松航,唐书恒,汤达祯,等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报,2009,38(5):713-718.
ZHANG Songhang,TANG Shuheng,TANG Dazhen,et al.Fractal characteristics of coal reservoir seepage pore,east margin of Ordos Basin[J].Journal of China University of Mining & Technology,2009,38(5):713-718.
[25] 文慧俭,闫林,姜福葱,等.低孔低渗储层孔隙结构分形特征[J].大庆石油学院院报,2007,31(1):15-18.
WEN Huijian,YAN Lin,JIANG Fucong,et al.The fractal characteristics of the pore texture in low porosity and low permeability reservoir[J]. Journal of Daqing Petroleum Institute,2007,31(1):15-18.
[26] 张岩,刘金城,徐浩,等.陆相与过渡相煤系页岩孔隙结构及分形特征对比——以鄂尔多斯盆地东北缘延安组与太原组为例[J].石油学报,2017,38(9):1036-1046.
ZHANG Yan,LIU Jincheng,XU Hao,et al.Comparison between pore structure and fractal characteristics of continental and transitional coal measures shale:a case study of Yan'an and Taiyuan formations at the northeastern margin of Ordos Basin[J].Acta Petrolei Sinica,2017,38(9):1036-1046.
[27] 彭军,韩浩东,夏青松,等.深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理——以塔里木盆地顺托果勒地区柯坪塔格组为例[J].石油学报,2018,39(7):775-791.
PENG Jun,HAN Haodong,XIA Qingsong,et al.Fractal characterization and genetic mechanism of micro-pore structure in deeply buried tight sandstone reservoirs:a case study of Kalpintag Formation in Shuntuoguole area,Tarim Basin[J].Acta Petrolei Sinica,2018,39(7):775-791.
[28] YAO Yanbin,LIU Dameng,TANG Dazhen,et al.Fractal characterization of adsorption-pores of coals from North China:an investigation on CH4 adsorption capacity of coals[J].International Journal of Coal Geology,2008,73(1):27-42.
[29] 李瑞琪,毛伟,吉庆生.迂曲度计算方法[J].油气田地面工程,2012,31(5):41.
LI Ruiqi,MAO Wei,JI Qingsheng.Calculation method of tortuosity[J].Oil-Gas Field Surface Engineering,2012,31(5):41.
[30] 桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理(Ⅰ)——煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-15.
SANG Shuxun,ZHU Yanming,ZHANG Shiyin,et al.Solid-gas interaction mechanism of coal-adsorbed gas (I)-coal pore structure and solid -gas interaction[J].Natural Gas Industry,2005,25(1):13-15.
[31] 李滔,李闽,张烈辉,等.微多孔介质迂曲度与孔隙结构关系[J].天然气地球科学,2018,29(8):1181-1189.
LI Tao,LI Min,ZHANG Liehui,et al.Study on the relationship of tortuosity with pore structure in micro-porous media[J].Natural Gas Geoscience,2018,29(8):1181-1189.
[32] 单衍胜,袁远,张家强,等.准南玛纳斯地区低阶煤储层特征及压裂改造效果研究[J].地质论评,2018,64(5):1277-1284.
SHAN Yansheng,YUAN Yuan,ZHANG Jiazhang,et al.Low-rank CBM reservoir characteristics and effects of fracturing reconstruction in the Manas area,southern Junggar Basin[J].Geological Review,2018,64(5):1277-1284. |