石油学报 ›› 2025, Vol. 46 ›› Issue (11): 2141-2173.DOI: 10.7623/syxb202511011
• 石油工程 • 上一篇
孙宝江1, 周梓强1, 孙骞2
收稿日期:2024-11-18
修回日期:2025-09-29
发布日期:2025-12-04
通讯作者:
孙宝江,男,1963年11月生,1999年获北京大学流体力学专业博士学位,现为中国石油大学(华东)教授,主要从事海洋油气工程、多相流动、井控、油气井流体力学与工程应用研究。
作者简介:孙宝江,男,1963年11月生,1999年获北京大学流体力学专业博士学位,现为中国石油大学(华东)教授,主要从事海洋油气工程、多相流动、井控、油气井流体力学与工程应用研究。Email:sunbj1128@vip.126.com
基金资助:Sun Baojiang1, Zhou Ziqiang1, Sun Qian2
Received:2024-11-18
Revised:2025-09-29
Published:2025-12-04
摘要: 引入智能方法解决钻采过程中参数优化、状态识别等技术中的效率和可靠性等问题是目前的研究热点,并展现了广阔的发展前景。但在油气钻采智能化工程技术的研发过程中,智能优化算法和预测模型尚存在时效性和鲁棒性差、可靠性不足等问题,导致人工智能方法在油气钻采工程中的应用尚不理想。对国内外油气钻采领域内钻完井工程设计与施工参数优化、水力压裂改造效果评价与工艺参数优化、人工举升井故障诊断、油气藏物性和产能预测等方面的人工智能方法及智能化技术的发展现状进行了概述,并对人工智能模型的训练过程对标签数据依赖严重、可解释性不足以及小样本学习能力欠佳、工程适用性与可靠性验证不足,以及智能方法解决优化问题时效性差、多目标优化决策方法灵活性不足等主要问题进行了归纳分析。结合中国石油工业钻采技术研究现状及上述问题提出了油气钻采工程中人工智能方法发展建议:①建立标准化行业共享数据库体系,解决智能模型对比与验证难题;②加强学习范式研究,缓解标签数据依赖问题;③加强智能优化方法研究,提高决策精准性与时效性;④强化物理约束的数据驱动模型研究,增强物理—数据双驱动模型的可靠性;⑤推进样本均衡与增强技术研究,提升少数类识别准确性与模型稳定性;⑥加强多模态数据融合与处理方法研究,提升智能模型预测精度与工程鲁棒性;⑦发挥通用及行业大模型优势,提高油气钻采多场景智能优化决策可解释性与准确性。
中图分类号:
孙宝江, 周梓强, 孙骞. 油气钻采工程中的人工智能方法研究进展[J]. 石油学报, 2025, 46(11): 2141-2173.
Sun Baojiang, Zhou Ziqiang, Sun Qian. Progress on artificial intelligence methods in oil and gas drilling and production[J]. Acta Petrolei Sinica, 2025, 46(11): 2141-2173.
| [1] 李阳,廉培庆,薛兆杰,等. 大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报(自然科学版),2020,44(4):1-11. LI Yang,LIAN Peiqing,XUE Zhaojie,et al.Application status and prospect of big data and artificial intelligence in oil and gas field development[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(4):1-11. [2] 国家能源局.国家能源局关于加快推进能源数字化智能化发展的若干意见[EB/OL].(2023-03-28)[2024-10-20].https://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122. htm.National Energy Administration.Several opinions on accelerating the development of energy digitalization and intelligence[EB/OL].(2023-03-28)[2024-10-20].https://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122. htm. [3] 苏义脑,路保平,刘岩生,等.中国陆上深井超深井钻完井技术现状及攻关建议[J].石油钻采工艺,2020,42(5):527-542. SU Yi’nao,LU Baoping,LIU Yansheng,et al.Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J].Oil Drilling & Production Technology,2020,42(5):527-542. [4] 中国石油新闻中心.七百亿参数昆仑大模型建设成果发布会在京举办[EB/OL].(2024-11-29)[2025-04-12].https://news.cnpc.com.cn/system/2024/11/29/030148895. shtml?utm_source= chatgpt.com.China Petroleum News Center.Press conference on the achievements of the 70-billion-parameter Kunlun large model held in Beijing[EB/OL].(2024-11-29)[2025-04-12].https://news.cnpc.com.cn/system/ 2024/11/29/030148895. shtml?utm_source= chatgpt.com. [5] 中国石化新闻网.以AI赋能石化发展[EB/OL].(2025-02-21)[2025-04-12].http://www.sinopecnews.com.cn/zhuanti/content/2025-02/21/content_7119453. html.Sinopec News Network.Empowering petrochemical development with AI[EB/OL].(2025-02-21)[2025-04-12].Available at:http://www.sinopecnews.com.cn/zhuanti/content/2025-02/21/content_7119453. html. [6] 人民网.中国海油发布"海能"人工智能模型[N/OL].人民日报海外版,2024-10-16(03)[2025-04-12].https://paper.people.com.cn/rmrbhwb/html/2024-10/16/content_26085749. htm.People’s Daily Online.CNOOC releases "Haineng" artificial intelligence model[N/OL].People’s Daily Overseas Edition,2024-10-16(03)[2025-04-12].https://paper.people.com.cn/rmrbhwb/html/2024-10/16/content_26085749. htm. [7] 匡立春,刘合,任义丽,等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发,2021,48(1):1-11. KUANG Lichun,LIU He,REN Yili,et al.Application and development trend of artificial intelligence in petroleum exploration and development[J].Petroleum Exploration and Development,2021,48(1):1-11. [8] 汪海阁,乔磊,杨雄,等.中石油页岩油气工程技术现状及发展建议[J].石油学报,2024,45(10):1552-1564. WANG Haige,QIAO Lei,YANG Xiong,et al.Current status and development recommendations for CNPC’s shale oil and gas engineering technology[J].Acta Petrolei Sinica,2024,45(10):1552-1564. [9] 徐凤银,熊先钺,侯伟,等.深部煤层气产业升级与"八个一体化"体系的建立[J].石油学报,2025,46(2):289-305. XU Fengyin,XIONG Xianyue,HOU Wei,et al.Upgrading of deep coalbed methane industry and establishment of the "Eight-in-One" system[J].Acta Petrolei Sinica,2025,46(2):289-305. [10] ERTEKIN T,SUN Qian.Artificial intelligence applications in reservoir engineering:a status check[J].Energies,2019,12(15):2897. [11] GAO Jiajia ,YANG Weidong ,CHEN Fuzhi,et al.Pore pressure prediction using machine learning methods and logging data considering Gaussian mixture clustering model[J].Geoenergy Science and Engineering,2026,257:214188-214188. [12] 冯义,朱亮,杨立军,等.基于LSTM神经网络深度序列机械钻速实时预测[J].西安石油大学学报(自然科学版),2024,39(1): 122-128. FENG Yi,ZHU Liang,YANG Lijun,et al.Real-time prediction of ROP based on LSTM neural network deep sequence[J].Journal of Xi’an Shiyou University(Natural Science Edition),2024,39(1):122-128. [13] ZHANG Chengkai,SONG Xianzhi,LIU Zihao,et al.Real-time and multi-objective optimization of rate-of-penetration using machine learning methods[J].Geoenergy Science and Engineering,2023,223:211568. [14] 李臻,宋先知,李根生,等.基于双输入序列到序列模型的井眼轨迹实时智能预测方法[J].石油钻采工艺,2023,45(4):393-403. LI Zhen,SONG Xianzhi,LI Gensheng,et al.Real-time intelligent prediction of well trajectory based on dual-input sequence-to-sequence model[J].Oil Drilling & Production Technology,2023,45(4):393-403. [15] 李辉,满曰南,李红星,等.基于相对熵改进模糊C均值聚类的溢流预警研究[J].钻采工艺,2023,46(3):165-170. LI Hui,MAN Yuenan,LI Hongxing,et al.Research on kick warning based on relative entropy improved fuzzy C-mean clustering[J].Drilling & Production Technology,2023,46(3):165-170. [16] 蔡晖,石洪福,王昭,等.基于机器学习的疏松砂岩油藏定向井初期产能预测与影响因素分析[J].中国海上油气,2025,37(3):123-131. CAI Hui,SHI Hongfu,WANG Zhao,et al.Initial productivity prediction and influencing factor analysis of directional wells in unconsolidated sandstone reservoirs based on machine learning[J].China Offshore Oil and Gas,2025,37(3):123-131. [17] XU Xijie,RUI Xiaoping,FAN Yonglei,et al.A multivariate long short-term memory neural network for coalbed methane production forecasting[J].Symmetry,2020,12(12):2045. [18] SUN Qian,ERTEKIN T.Screening and optimization of polymer flooding projects using artificial-neural-network (ANN)based proxies[J].Journal of Petroleum Science and Engineering,2020,185:106617. [19] 刘合,李艳春,贾德利,等.人工智能在注水开发方案精细化调整中的应用现状及展望[J].石油学报,2023,44(9):1574-1586. LIU He,LI Yanchun,JIA Deli,et al.Application status and prospects of artificial intelligence in the refinement of waterflooding development program[J].Acta Petrolei Sinica,2023,44(9):1574-1586. [20] ZHANG Kai,YU Haiqun,MA Xiaopeng,et al.Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies[J].Petroleum Science,2022,19(2):707-719. [21] 谭茂金,武宏亮,王思宇,等.中国海相页岩气测井评价技术进展与发展方向[J].石油学报,2024,45(1):241-260. TAN Maojin,WU Hongliang,WANG Siyu,et al.Progress and development direction of log interpretation technology for marine shale gas in China[J].Acta Petrolei Sinica,2024,45(1):241-260. [22] 刘义,胡修权,李娜,等.机器学习在非常规油气藏岩相研究中的应用进展综述[J/OL].中国地质,(2025-05-20).http://kns.cnki.net/kcms/detail/11.1167. P.20250519.1754.004. html.LIU Yi,HU Xiuquan,LI Na,et al.A review on the application of machine learning in the study of lithofacies of unconventional oil and gas reservoirs[J/OL].Geology in China,(2025-05-20).http://kns.cnki.net/kcms/detail/11.1167. P.20250519.1754.004. html. [23] REN Quan,ZHANG Hongbing,ZHANG Dailu,et al.A novel hybrid method of lithology identification based on k-means++ algorithm and fuzzy decision tree[J].Journal of Petroleum Science and Engineering,2022,208:109681. [24] LIN Jing,LI Hui,LIU Naihao,et al.Automatic lithology identification by applying LSTM to logging data:a case study in X tight rock reservoirs[J].IEEE Geoscience and Remote Sensing Letters,2021,18(8):1361-1365. [25] DUAN Yajun,XIE Jun,SU Yanchun,et al.Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan sag as an example[J].Scientific Reports,2020,10(1):19209. [26] SUN Jian,LI Qi,CHEN Mingqiang,et al.Optimization of models for a rapid identification of lithology while drilling:a win-win strategy based on machine learning[J].Journal of Petroleum Science and Engineering,2019,176:321-341. [27] REN Quan,ZHANG Hongbing,ZHANG Dailu,et al.Lithology identification using principal component analysis and particle swarm optimization fuzzy decision tree[J].Journal of Petroleum Science and Engineering,2023,220:111233. [28] QAEDI K,BARKER S M,SIMANJUNTAK A,et al.Automated machine learning for lithology prediction derived from seismic data[R].OTC 34778,2024. [29] MAHMOUD A A,ELKATATNY S,AL-ABDULJABBAR A.Application of machine learning models for real-time prediction of the formation lithology and tops from the drilling parameters[J].Journal of Petroleum Science and Engineering,2021,203:108574. [30] ZIADAT W,GAMAL H,ELKATATNY S.Real-time machine learning application for Formation tops and lithology prediction[R].OTC 32447,2023. [31] ZHANG Jiafeng,LIU Ye,MA Yuheng,et al.Real-time lithology identification from drilling data with self & cross attention model and wavelet transform[J].Geoenergy Science and Engineering,2025,244:213427. [32] MENSAH A O.Real-time lithology prediction while drilling using machine learning algorithms:a web application based solution[R]. SPE 217479,2023. [33] YAN Tie,XU Rui,SUN Shihui,et al.A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm[J].Petroleum Science,2024,21(2):1135-1148. [34] DENG Song,PAN Haoyu,LI Chaowei,et al.A real-time lithological identification method based on SMOTE-Tomek and ICSA optimization[J].Acta Geologica Sinica(English Edition),2024,98(2):518-530. [35] QIAN Haiyu,GENG Yanfeng,WANG Hongyu.Lithology identification based on ramified structure model using generative adversarial network for imbalanced data[J].Geoenergy Science and Engineering,2024,240:213036. [36] DING Yan,CUI Yi,XIN Qingqing,et al.Automated identification of lithology from drilling cuttings based on deep residual network[R].SPE 214565,2023. [37] TOLSTAYA E,SHAKIROV A,MEZGHANI M.Lithology prediction from drill cutting images using convolutional neural networks and automated dataset cleaning[R].SPE 216418,2023. [38] 李根生,宋先知,祝兆鹏,等.智能钻完井技术研究进展与前景展望[J].石油钻探技术,2023,51(4):35-47. LI Gensheng,SONG Xianzhi,ZHU Zhaopeng,et al.Research progress and the prospect of intelligent drilling and completion technologies[J].Petroleum Drilling Techniques,2023,51(4):35-47. [39] LI Zhen,SONG Xianzhi,WANG Zheng,et al.Real-time prediction of wellbore trajectory with a dual-input GRU (Di-GRU)model[R].OTC 34894,2024. [40] GAO Yi,WANG Na,MA Yihao.L2-SSA-LSTM prediction model of steering drilling wellbore trajectory[J].IEEE Access,2024,12: 450-461. [41] GAO Yi,WANG Na,LI Fei.Steering drilling wellbore trajectory prediction based on the NOA-LSTM-FCNN method[J].Scientific Reports,2025,15(1):5215. [42] WANG Hongyu,GENG Yanfeng,WANG Weiliang,et al.Build-up rate prediction using data augmentation with VAE-based feature extraction[J].Energy,2025,330:136716. [43] LI Zhen,SONG Xianzhi,YU Qitao,et al.Integrating mechanics and machine learning for build-up rate prediction[J].Geoenergy Science and Engineering,2025,246:213594. [44] CHEN Dong,MAO Kaifeng,YE Zhihui,et al.An artificial intelligent well trajectory design method combining both geological and engineering objectives[J].Geoenergy Science and Engineering,2024,236:212736. [45] WANG Zhaojun,SHEN Shuilong,CHEN Dong,et al.Multi-objective optimization of the wellbore trajectory considering both geological and engineering factors[J].Geoenergy Science and Engineering,2025,246:213647. [46] CHEN Bihai,WEN Guojun,HE Xin,et al.Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design[J].Geoenergy Science and Engineering,2023,222:211431. [47] XU Jiafeng,CHEN Xin,CAO Weihua,et al.Multi-objective trajectory planning in the multiple strata drilling process:a bi-directional constrained co-evolutionary optimizer with Pareto front learning[J].Expert Systems with Applications,2024,238:122119. [48] XU Jiafeng,CHEN Xin,ZHOU Yang,et al.Expensive deviation-correction drilling trajectory planning:a constrained multi-objective Bayesian optimization with feasibility-oriented bi-objective acquisition function[J].Control Engineering Practice,2025,156:106240. [49] SUN Shihui,GAO Yanwen,SUN Xiaofeng,et al.Intelligent optimization of horizontal wellbore trajectory based on reinforcement learning[J].Geoenergy Science and Engineering,2025,244:213479. [50] VISHNUMOLAKALA N,KESIREDDY V,DEY S,et al.Optimizing well trajectory navigation and advanced Geo-Steering using deep-reinforcement learning[R].SPE 215011,2023. [51] MUHAMMAD R B,CHERAGHI Y,ALYAEV S,et al.Geosteering robot powered by multiple probabilistic interpretation and artificial intelligence:benchmarking against human experts[J].SPE Journal,2025,30(3):995-1009. [52] AL-MUDHAF M N,AL-HERZ A,HAFIZ H A,et al.Revolutionizing drilling efficiency with Neuro Autonomous Solutions:DrillOps automate,DD advisor,and AutoCurve coupled with SLB well construction rig & blue BHA[R].SPE 216690,2023. [53] Schlumberger.SLB adds AI-driven geosteering to its autonomous drilling solutions to achieve more efficient and productive wells[EB/OL].(2024-12-09)[2025-04-12].https://www.slb.com/news-and-insights/newsroom/press-release/2024/slb-adds-ai-geosteering. [54] UMEONAKU L,ALUU B,OKAFOR K,et al.A sustainable pathway to achieving operational efficiency while reducing carbon emissions using remote operations and drilling automation[R].SPE 217134,2023. [55] HALLIBURTON.LOGIX®:precision drilling through intelligent automation[EB/OL].(2024-09-18)[2025-04-12].https://www.halliburton.com/en/about-us/press-release/logix-precision-drilling-through-intelligent-automation. [56] FARHI N,ABDEL SAMIE M A,ELDEMERDASH M M,et al.A smarter way to drill:first autonomous directional drilling run in Kuwait Delivers 8.5" landing section in record time-case study from North Kuwait[R].SPE 211742,2022. [57] FARHI N,MARCK J C,SANYAL A,et al.Remote drilling solution delivers consistency with the use of an automated drilling director:case studies from Kuwait[R].SPE 207866,2021. [58] VAN OORT E,TAYLOR E,THONHAUSER G,et al.Real-time rig-activity detection helps identify and minimize invisible lost time[J].World Oil,2008,229(4):39-47. [59] 张菲菲,崔亚辉,于琛,等.基于机器学习的钻井工况识别技术现状及发展[J].长江大学学报(自然科学版),2023,20(4):53-65. ZHANG Feifei,CUI Yahui,YU Chen,et al.Recent developments and future trends of drilling status recognition technology based on machine learning[J].Journal of Yangtze University(Natural Science Edition),2023,20(4):53-65. [60] 胡志强,杨进,王磊,等.钻井工况智能识别与时效分析技术[J].石油钻采工艺,2022,44(2):241-246. HU Zhiqiang,YANG Jin,WANG Lei,et al.Intelligent identification and time-efficiency analysis of drilling operation conditions[J].Oil Drilling & Production Technology,2022,44(2):241-246. [61] 毛光黔,宋先知,丁燕,等.基于梯度提升决策树算法的钻井工况识别方法[J].石油钻采工艺,2023,45(5):532-539. MAO Guangqian,SONG Xianzhi,DING Yan,et al.Drilling condition identification method based on gradient boosting decision tree[J].Oil Drilling & Production Technology,2023,45(5):532-539. [62] QIAO Ying,LUO Yihan,SHANG Xu,et al.An efficient drilling conditions classification method utilizing encoder and improved Graph Attention Networks[J].Geoenergy Science and Engineering,2024,233:212578. [63] LIU Zihao,SONG Xianzhi,YE Shanlin,et al.Intelligent identification workflow of drilling conditions combining deep learning and drilling knowledge[C]//Proceedings of the 43rd International Conference on Ocean,Offshore and Arctic Engineering.Singapore:ASME,2024. [64] 王正,宋先知,李洪松,等.基于1dCNN-BiGRU和注意力机制的钻井工况智能识别方法[J].石油科学通报,2025,10(5):926-940. WANG Zheng,SONG Xianzhi,LI Hongsong,et al.Intelligent recognition method for drilling conditions based on 1dCNN-BiGRU and attention mechanism[J].Petroleum Science Bulletin,2025,10(5):926-940. [65] CHATAR C,SURESHA S,SHAO L,et al.Determining rig state from computer vision analytics[R].SPE 204086,2021. [66] 殷启帅,杨进,曹博涵,等.基于长短期记忆神经网络的深水钻井工况实时智能判别模型[J].石油钻采工艺,2022,44(1):97-104. YIN Qishuai,YANG Jin,CAO Bohan,et al. Real-time intelligent rig activities classification model of deep-water drilling using Long Short-Term Memory(LSTM) network[J].Oil Drilling & Production Technology,2022,44(1):97-104. [67] 中海石油(中国)有限公司,中海石油(中国)有限公司天津分公司.一种基于钻井多工况的钻井异常状态智能识别方法:202410805982.5[P].2024-09-06. CNOOC Limited,CNOOC(China) Tianjin Branch.Well drilling abnormal state intelligent identification method based on multiple working conditions of well drilling:202410805982.5[P].2024-09-06. [68] QIAO Ying,XU Hongmin,ZHOU Wenjun,et al.A BiGRU joint optimized attention network for recognition of drilling conditions[J].Petroleum Science,2023,20(6):3624-3637. [69] 杨传书,王敏生,李昌盛,等.中国石化钻井工程决策支持系统进展及展望[J].钻采工艺,2025,48(1):55-62. YANG Chuanshu,WANG Minsheng,LI Changsheng,et al.Progress and prospects of drilling engineering decision support system in Sinopec[J].Drilling & Production Technology,2025,48(1):55-62. [70] 高健,汪海阁,宋世贵,等.中国石油工程作业智能支持中心模式改革与初探[J].钻采工艺,2025,48(1):37-45. GAO Jian,WANG Haige,SONG Shigui,et al.Reform and preliminary study on the mode of CNPC engineering intelligent support center[J]. Drilling & Production Technology,2025,48(1):37-45. [71] CURINA F,ABDO E,ROUHI A,et al.Rig state identification and equipment optimization using machine learning models[R].OMC 2021-063,2021. [72] KRIKOR A,KHAMBETE S P,BIMASTIANTO P A,et al.Machine learning delivers automated feedback on real time key performance indicators during drilling operations[R].SPE 211753,2022. [73] 沐华艳,孙金声,丁燕,等.基于机械比能的钻速预测模型优选[J].钻采工艺,2023,46(3):16-21. MU Huayan,SUN Jinsheng,DING Yan,et al.Optimization of ROP-increase prediction model based on mechanical specific energy theory[J].Drilling & Production Technology,2023,46(3):16-21. [74] 刘伟吉,张家辉,祝效华.多目标优化算法在机械比能与机械钻速耦合优化中的应用[J].石油钻采工艺,2025,47(03):265-276. LIU Weiji,ZHANG Jiahui,ZHU Xiaohua.Application of multi-objective optimization algorithm in coupling optimization of mechanical specificenergy and rate of penetration[J].Oil Drilling & Production Technology,2025,47(3):265-276. [75] ALSAIHATI A,ISMAIL M,ELKATATNY S.Optimization of drilling parameters while drilling surface holes using machine learning and differential evolution[J].SPE Journal,2025,30(2):591-604. [76] CHEN Xuyue,DU Xu,WENG Chengkai,et al.A real-time drilling parameters optimization method for offshore large-scale cluster extended reach drilling based on intelligent optimization algorithm and machine learning[J].Ocean Engineering,2024,291:116375. [77] WU Xiao,LAI Xuzhi,HU Jie,et al.Improvement of rate of penetration in drilling process based on TCN-Vibration recognition[J].IEEE Transactions on Instrumentation and Measurement,2024,73:2524912. [78] HAI weiguo,HE Yingming,LI Yafeng,et al.Multi-element drilling parameter optimization based on drillstring dynamics and ROP model[J].Geoenergy Science and Engineering,2025,244:213460. [79] HAO Jiasheng,XU Haomin,PENG Zhinan,et al.An online adaptive ROP prediction model using GBDT and Bayesian optimization algorithm in drilling[J].Geoenergy Science and Engineering,2025,246:213596. [80] HEGDE C,DAIGLE H,MILLWATER H,et al.Analysis of rate of penetration (ROP)prediction in drilling using physics-based and data-driven models[J].Journal of Petroleum Science and Engineering,2017,159:295-306. [81] 祝兆鹏,朱林,宋先知,等.机理约束下钻井机械钻速智能预测泛化方法[J].天然气工业,2024,44(9):179-189. ZHU Zhaopeng,ZHU Lin,SONG Xianzhi,et al.A generalization method of intelligent ROP prediction under mechanism constraints[J].Natural Gas Industry,2024,44(9):179-189. [82] 郑双进,江厚顺,熊梦园,等.基于数据驱动和机理模型的机械钻速预测[J].钻采工艺,2025,48(1):78-87. ZHENG Shuangjin,JIANG Houshun,XIONG Mengyuan,et al.Data driven and mechanistic model based prediction of rate of penetration[J].Drilling & Production Technology,2025,48(1):78-87. [83] 李博志,杨明合,许楷,等.基于注意力机制的卷积神经网络机械钻速预测方法[J].科学技术与工程,2024,24(21):8910-8916. LI Bozhi,YANG Minghe,XU Kai,et al.Prediction method for ROP based on attention mechanism of convolutional neural network[J].Science Technology and Engineering,2024,24(21):8910-8916. [84] MENG Han,LIN Botao,JIN Yan.Stop using black-box models:application of explainable artificial intelligence for rate of penetration prediction[J].SPE Journal,2024,29(12):6640-6654. [85] 彭炽,任书江,杨赟.基于子网络架构的页岩气水平井机械钻速预测[J].钻采工艺,2025,48(1):113-120. PENG Chi,REN Shujiang,YANG Yun.The prediction of rate of penetration in shale gas horizontal wells based on subnetwork architecture[J].Drilling & Production Technology,2025,48(1):113-120. [86] YUAN Qingrui,HE Miao,CHEN Zhichao,et al.A real-time prediction method for rate of penetration sequence in offshore deep wells drilling based on attention mechanism-enhanced BiLSTM model[J].Ocean Engineering,2025,325:120820. [87] 郭家,刘烨,韩雪银,等.机器学习预测机械钻速及在工程上的应用[J].海洋石油,2024,44(1):92-95. GUO Jia,LIU Ye,HAN Xueyin,et al.Prediction of ROP by machine learning and its application in engineering[J].Offshore Oil,2024,44(1):92-95. [88] YIN Hu,ZHAO Xiuwen,LI Qian.Research on adaptive prediction model of rate of penetration under dynamic formation conditions[J].Engineering Applications of Artificial Intelligence,2024,133:108281. [89] JUNIOR J R B,LAVI B.Enhancing rate of penetration prediction in drilling operations:a data stream framework approach[J].Engineering Applications of Artificial Intelligence,2025,143:110034. [90] MA Zhengchao,WENG Jintao,ZHANG Junkai,et al.Intelligent prediction of rate of penetration through meta-learning and data augmentation synergy under limited sample[J].Geoenergy Science and Engineering,2025,250:213818. [91] PAYETTE G S,SPIVEY B J,WANG L,et al.A real-time well-site based surveillance and optimization platform for drilling:technology,basic workflows and field results[R].SPE 184615,2017. [92] DELAVAR M R,RAMEZANZADEH A,GHOLAMI R,et al.Optimization of drilling parameters using combined multi-objective method and presenting a practical factor[J].Computers & Geosciences,2023,175:105359. [93] YAVARI H,FAZAELIZADEH M,AADNOY B S,et al.An approach for optimization of controllable drilling parameters for motorized bottom hole assembly in a specific Formation[J].Results in Engineering,2023,20:101548. [94] WU Xiao,LAI Xuzhi,HU Jie,et al.Efficiency-safety coordination optimization in drilling process under complex Formations[J].Neurocomputing,2025,630:129732. [95] SAADELDIN R,GAMAL H,ELKATATNY S.Machine learning solution for predicting vibrations while drilling the curve section[J].ACS Omega,2023,8(39):35822-35836. [96] 刘慕臣,宋先知,李大钰,等.钻柱摩阻扭矩智能预测模型与解释[J].煤田地质与勘探,2023,51(9):89-99. LIU Muchen,SONG Xianzhi,LI Dayu,et al.An intelligent prediction method and interpretability for drag and torque of drill string[J].Coal Geology & Exploration,2023,51(9):89-99. [97] 汪海阁,高博,郑有成,等.机器学习在钻柱振动识别与预测中的研究进展[J].天然气工业,2024,44(1):149-158. WANG Haige,GAO Bo,ZHENG Youcheng,et al.Research progress of machine learning in drill string vibration recognition and prediction[J].Natural Gas Industry,2024,44(1):149-158. [98] WEATHERFORD.Centro® well construction optimization platform[EB/OL].[2025-04-12].https://www.weatherford.com/products-and-services/drilling-and-evaluation/drilling-services/centro-well-construction-optimization-platform/. [99] CAO Jie,NABAVI J,OEDEGAARD S I.Drilling advisory automation with digital twin and AI technologies[R].SPE 217960,2024. [100] Baker Hughes.i-Trak drilling automation services maximize ROP and save 22 hours in challenging hole section[EB/OL].[2025-04-12].https://www.bakerhughes.com/case-study/itrak-drilling-automation-services-maximize-rop-and-save-22-hours-challenging-h olehttps://www.nov.com/products/kaizen-intelligent-drilling-optimizer. [101] EXEBENUS.Exebenus spotter ROP agent[EB/OL].[2025-04-12].https://exebenus.com/exebenus-spotter/rop-agent/. [102] EXEBENUS.ROP Agent reduces drilling time in offshore development side-track well[EB/OL].[2025-04-12].https://exebenus.com/2022/02/01/rop-agent-reduces-drilling-time-in-offshore-development-side-track-well/. [103] NOV.IDO intelligent drilling optimizer kaizen case study[EB/OL].[2025-04-12].https://www.nov.com/-/media/nov/files/products/wbt/md-totco/kaizen-intelligent-drilling-optimizer/kaizen-intelligent-drilling-optimizer-included-in-program-that-set-record-for-fastest-well-drilled-i.pdf. [104] NOV.IDO | intelligent drilling optimizer | kaizen[EB/OL].[2025-04-12].https://www.nov.com/products/kaizen-intelligent-drilling-optimizer. [105] MGIMBA M M,JIANG Shu,NYAKILLA E E,et al.Application of GMDH to predict pore pressure from well logs data:a case study from southeast Sichuan Basin,China[J].Natural Resources Research,2023,32(4):1711-1731. [106] JAFARIZADEH F,RAJABI M,TABASI S,et al.Data driven models to predict pore pressure using drilling and petrophysical data[J].Energy Reports,2022,8:6551-6562. [107] RADWAN A E,WOOD D A,RADWAN A A.Machine learning and data-driven prediction of pore pressure from geophysical logs:a case study for the Mangahewa gas field,New Zealand[J].Journal of Rock Mechanics and Geotechnical Engineering,2022,14(6):1799-1809. [108] YALAMANCHI P,DATTA GUPTA S,UPADHYAY R.Evaluating the effectiveness of ensemble machine learning approaches for pore pressure prediction using petrophysical log data in carbonate reservoir[J].Acta Geophysica,2025,73(3):2591-2619. [109] DAS G,MAITI S.Ensemble learning-based interpretable method for pore pressure prediction using multivariate well logging data of IODP site U1517[J].Earth Science Informatics,2025,18(2):206. [110] KRISHNA S,IRFAN S A,KESHAVARZ S,et al.Smart predictions of petrophysical Formation pore pressure via robust data-driven intelligent models[J].Multiscale and Multidisciplinary Modeling,Experiments and Design,2024,7(6):5611-5630. [111] DENG Song,PAN Haoyu,WANG Haige,et al.A hybrid machine learning optimization algorithm for multivariable pore pressure prediction[J]. Petroleum Science,2024,21(1):535-550. [112] XU Yuqiang,YANG Lei,XU Jiaxing,et al.Prediction method for Formation pore pressure based on transfer learning[J].Geoenergy Science and Engineering,2024,236:212747. [113] CAO Shaohua,WANG Chengqi,NIU Qiang,et al.Enhancing pore pressure prediction accuracy:a knowledge-driven approach with temporal fusion transformer[J].Geoenergy Science and Engineering,2024,238:212839. [114] SHI Fang,LIAO Hualin,QU Fengtao,et al.Collaborative-driven reservoir Formation pressure prediction using GAN-ML models and well logging data[J].Geoenergy Science and Engineering,2024,242:213271. [115] DELAVAR M R,RAMEZANZADEH A.Pore pressure prediction by empirical and machine learning methods using conventional and drilling logs in carbonate rocks[J].Rock Mechanics and Rock Engineering,2023,56(1):535-564. [116] FARSI M,MOHAMADIAN N,GHORBANI H,et al.Predicting Formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms[J].Natural Resources Research,2021,30(5):3455-3481. [117] 宋先知,姚学喆,李根生,等.基于LSTM-BP神经网络的地层孔隙压力计算方法[J].石油科学通报,2022,7(1):12-23. SONG Xianzhi,YAO Xuezhe,LI Gensheng,et al.A novel method to calculate Formation pressure based on the LSTM-BP neural network[J].Petroleum Science Bulletin,2022,7(1):12-23. [118] 许玉强,何保伦,王舒,等.深度学习与Eaton法联合驱动的地层孔隙压力预测方法[J].中国石油大学学报(自然科学版),2023,47(6):50-59. XU Yuqiang,HE Baolun,WANG Yanshu,et al.A novel prediction method of Formation pore pressure driven by deep learning and Eaton method[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(6):50-59. [119] 朱海燕,王智辉,范宇,等.碳酸盐岩地层孔隙压力预测方法研究进展及展望[J].石油学报,2025,46(8):1628-1646. ZHU Haiyan,WANG Zhihui,FAN Yu,et al.Research progress and application prospects of prediction methods for pore pressure in carbonate Formations[J].Acta Petrolei Sinica,2025,46(8):1628-1646. [120] ISEMIN I,NKUNDU K A.Investigating the Use of machine learning models for the prediction of pressure gradient and flow regimes in multiphase flow in horizontal pipes[R].SPE 208410,2021. |
| [1] | 陈志明, 朱海锋, 赵辉, 董鹏, 廖新维, Yu Wei. 基于特征点和改进卷积神经网络的压裂水平井裂缝参数高效快速反演[J]. 石油学报, 2025, 46(9): 1751-1763. |
| [2] | 汪海阁, 夏焱, 丁吉平, 龙一夫, 林盛杰, 王元, 杨雄, 曹振义, 常益行, 谢江锋. 中石油深层煤岩气钻完井工程技术现状及展望[J]. 石油学报, 2025, 46(8): 1576-1588. |
| [3] | 刘合, 任义丽, 李欣, 朱如凯, 胡延旭, 刘茜, 苏乾潇, 吴健平, 李彬. 岩心智能识别技术内涵与展望[J]. 石油学报, 2024, 45(8): 1296-1308. |
| [4] | 计秉玉, 张文彪, 何应付, 段太忠, 刘合. 油藏地质建模与数值模拟一体化内涵及发展趋势[J]. 石油学报, 2024, 45(7): 1152-1162. |
| [5] | 汪海阁, 乔磊, 杨雄, 车阳, 丁吉平. 中石油页岩油气工程技术现状及发展建议[J]. 石油学报, 2024, 45(10): 1552-1564. |
| [6] | 刘合, 李艳春, 贾德利, 王素玲, 乔美霞, 屈如意, 温鹏云, 任智慧. 人工智能在注水开发方案精细化调整中的应用现状及展望[J]. 石油学报, 2023, 44(9): 1574-1586. |
| [7] | 刘喜武, 王心宇, 刘宇巍, 张金强, 刘炯, 刘倩. 中国陆相页岩油地震勘探技术现状及发展方向[J]. 石油学报, 2023, 44(12): 2270-2285. |
| [8] | 刘文岭, 韩大匡. 数字孪生油气藏:智慧油气田建设的新方向[J]. 石油学报, 2022, 43(10): 1450-1461. |
| [9] | 孙金声, 刘凡, 程荣超, 冯杰, 郝惠军, 王韧, 白英睿, 刘钦政. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报, 2022, 43(1): 91-100. |
| [10] | 李宁, 徐彬森, 武宏亮, 冯周, 李雨生, 王克文, 刘鹏. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4): 508-522. |
| [11] | 王敏生, 光新军. 智能钻井技术现状与发展方向[J]. 石油学报, 2020, 41(4): 505-512. |
| [12] | 王以法. 新型智能钻头的设计[J]. 石油学报, 2003, 24(1): 92-95. |
| [13] | 王以法. 人工智能钻井实时专家控制系统研究[J]. 石油学报, 2001, 22(2): 83-86. |
| [14] | 吴新根, 葛家理. 应用人工神经网络识别碳酸盐岩相[J]. 石油学报, 1996, 17(4): 50-54. |
| [15] | 张绍槐, 何华灿, 李琪, 郭建明. 石油钻井信息技术的智能化研究[J]. 石油学报, 1996, 17(4): 114-119. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1