[1] 胡素云,李建忠,王铜山,等. 中国石油油气资源潜力分析与勘探选区思考[J].石油实验地质,2020,42(5):813-823. HU Suyun,LI Jianzhong,WANG Tongshan,et al.CNPC oil and gas resource potential and exploration target selection[J].Petroleum Geology & Experiment,2020,42(5):813-823. [2] 罗红文,李海涛,李颖,等.低渗透气藏压裂水平井产出剖面与裂缝参数反演解释[J].石油学报,2021,42(7):936-947. LUO Hongwen,LI Haitao,LI Ying,et al.Inversion and interpretation of production profile and fracture parameters of fractured horizontal wells in low-permeability gas reservoirs[J].Acta Petrolei Sinica,2021,42(7):936-947. [3] 计秉玉,张文彪,何应付,等.油藏地质建模与数值模拟一体化内涵及发展趋势[J].石油学报,2024,45(7):1152-1162. JI Bingyu,ZHANG Wenbiao,HE Yingfu,et al.Connotation and development trends of integration between geological reservoir modeling and numerical reservoir simulation[J].Acta Petrolei Sinica,2024,45(7):1152-1162. [4] 刘合,任义丽,李欣,等.岩心智能识别技术内涵与展望[J].石油学报,2024,45(8):1296-1308. LIU He,REN Yili,LI Xin,et al.Connotation and prospect of intelligent recognition technology for cores[J].Acta Petrolei Sinica,2024,45(8):1296-1308. [5] 杨德彬,何新明,张恒,等.塔河油田主体区奥陶系表层岩溶带智能识别及缝洞发育规律[J].石油学报,2024,45(2):374-389. YANG Debin,HE Xinming,ZHANG Heng,et al.Intelligent identification of Ordovician epikarst zones and development laws of fractures and vugs in the main area of Tahe oilfield[J].Acta Petrolei Sinica,2024,45(2):374-389. [6] 殷启帅,张来斌,钟弘成,等.基于神经网络优化算法的系泊系统智能设计[J].石油学报,2025,46(5):967-976. YIN Qishuai,ZHANG Laibin,ZHONG Hongcheng,et al.Intelligent analysis and design of tensioned mooring system based on backpropagation neural network and genetic algorithm[J].Acta Petrolei Sinica,2025,46(5):967-976. [7] 王卫星,成绥民,李汝勇,等.人工智能在试井解释中的应用研究[J].西南石油学院学报,1991,13(2):31-37. WANG Weixing,CHENG Suimin,LI Ruyong,et al.Use of artificial intelligence in well test interpretation[J].Journal of Southwest Petroleum Institute,1991,13(2):31-37. [8] 成绥民,李论,孙志林,等.神经网络专家系统在试井解释中的应用[J].西安石油学院学报,1997,12(2):32-33. CHENG Suimin,LI Lun,SUN Zhilin,et al.Application of neural networks and expert system in the interpretation of well test[J].Journal of Xi’an Petroleum Institute,1997,12(2):32-33. [9] 胡泽,赵必荣.水平井试井解释自动参数识别新方法[J].天然气工业,1997,17(2):71-74. HU Ze,ZHAO Birong.A new method for discrimination of automatic parameters in horizontal well test analysis[J].Natural Gas Industry,1997,17(2):71-74. [10] 邓远忠,陈钦雷.试井解释图版拟合分析的神经网络方法[J].石油勘探与开发,2000,27(1):64-66. DENG Yuanzhong,CHEN Qinlei.Using artificial neural network to realize type curve match analysis of well test data[J].Petroleum Exploration and Development,2000,27(1):64-66. [11] AL-KAABI A A U,LEE W J.Using artificial neural nets to identify the well-test interpretation model[J].SPE Formation Evaluation,1993,8(3):233-240. [12] VAFERI B,ESLAMLOUEYAN R,AYATOLLAHI S.Automatic recognition of oil reservoir models from well testing data by using multi -layer perceptron networks[J].Journal of Petroleum Science and Engineering,2011,77(3/4):254-262. [13] ADIBIFARD M,TABATABAEI-NEJAD S A R,KHODAPANAH E.Artificial Neural Network (ANN)to estimate reservoir parameters in Naturally Fractured Reservoirs using well test data[J].Journal of Petroleum Science and Engineering,2014,122:585-594. [14] GHAFFARIAN N,ESLAMLOUEYAN R,VAFERI B.Model identification for gas condensate reservoirs by using ANN method based on well test data[J].Journal of Petroleum Science and Engineering,2014,123:20-29. [15] ALMARAGHI A M,EL-BANBI A H.Automatic reservoir model identification using artificial neural networks in pressure transient analysis[R].SPE-175850,2015. [16] 李祯,郭奇,卜亚辉,等.基于深度学习的饱和度场样本库建立及预测[J].石油学报,2024,45(4):698-707. LI Zhen,GUO Qi,BU Yahui,et al.Establishment and prediction of sample pool of saturation field based on deep learning[J].Acta Petrolei Sinica,2024,45(4):698-707. [17] ALQAHTANI N,ARMSTRONG R T,MOSTAGHIMI P.Deep learning convolutional neural networks to predict porous media properties[R].SPE191906,2018. [18] 赵春兰,屈瑶,王兵,等.一种基于2D-CNN深度学习的钻井事故等级预测新方法[J].天然气工业,2022,42(12):95-105. ZHAO Chunlan,QU Yao,WANG Bing,et al.A new method for predicting drilling accident level based on 2D-CNN deep learning[J].Natural Gas Industry,2022,42(12):95-105. [19] CHU Hongyang,LIAO Xinwei,DONG Peng,et al.An automatic classification method of well testing plot based on convolutional neural network (CNN)[J].Energies,2019,12(15):2846. [20] LIU Xuliang,LI Daolun,YANG Jinghai,et al.Automatic well test interpretation based on convolutional neural network for infinite reservoir[J].Journal of Petroleum Science and Engineering,2020,195:107618. [21] LI Daolun,LIU Xuliang,ZHA Wenshu,et al.Automatic well test interpretation based on convolutional neural network for a radial composite reservoir[J].Petroleum Exploration and Development,2020,47(3):623-631. [22] DONG Peng,CHEN Zhiming,LIAO Xinwei,et al.Application of deep learning on well-test interpretation for identifying pressure behavior and characterizing reservoirs[J].Journal of Petroleum Science and Engineering,2022,208:109264. [23] 齐占奎,张新鹏,刘旭亮,等.一种基于一维卷积神经网络的试井模型智能识别方法[J].油气井测试,2024,33(2):72-78. QI Zhankui,ZHANG Xinpeng,LIU Xuliang,et al.An intelligent method for identifying well testing models based on one-dimensional convolutional neural network[J].Well Testing,2024,33(2):72-78. [24] 王欢.低渗透油藏体积压裂井动态反演[D].北京:中国石油大学(北京),2015. WANG Huan.Dynamic inversion of volumetric fracturing wells in low permeability reservoirs[D].Beijing:China University of Petroleum,2015. [25] 梁光跃,廖新维,赵晓亮.特征点拟合法在非牛顿流试井解释中的应用[J].西南石油大学学报(自然科学版),2011,33(6):94-100. LIANG Guangyue,LIAO Xinwei,ZHAO Xiaoliang.Characteristic points matching method applied in non-newtonian reservoir well testing[J].Journal of Southwest Petroleum University(Science & Technology Edition),2011,33(6):94-100. [26] 廖新维,陈晓明,赵晓亮,等.低渗油藏体积压裂井压力特征分析[J].科技导报,2016,34(7):117-122. LIAO Xinwei,CHEN Xiaoming,ZHAO Xiaoliang,et al.Pressure transient analysis of volume fracturing well in low permeability oil reservoir[J].Science & Technology Review,2016,34(7):117-122. [27] ZHU Haifeng,CHEN Zhiming,ZHAO Xin,et al.Intelligent parameter inversions for activated fault based on well testing constraints and transfer learning[J].SPE Journal,2025,30(6):3896-3916. [28] HAN Jiapeng,CHEN Zhiming,ZHOU Biao.Transient flow analysis of multistage fractured horizontal wells with varied natural fractures connection relationships[J].SPE Journal,2025,30(4):1984-2001. [29] FU Zhuojia,CHEN Wen,YANG Haitian.Boundary particle method for Laplace transformed time fractional diffusion equations[J].Journal of Computational Physics,2013,235:52-66. [30] 同登科,陈钦雷.关于Laplace数值反演Stehfest方法的一点注记[J].石油学报,2001,22(6):91-92. TONG Dengke,CHEN Qinlei.A note on the Stehfest method of Laplace's numerical inversion[J].Acta Petrolei Sinica,2001,22(6):91-92. [31] KINGMA D P,BA J.Adam:a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations.San Diego:ICLR,2015. [32] 陈志明,YU Wei,石璐铭,等.压裂水平井的多模式裂缝网络试井模型及参数评价——以吉木萨尔页岩油为例[J].石油学报,2023,44(10):1706-1726. CHEN Zhiming,YU Wei,SHI Luming,et al.Well test model and parameter evaluation of multi-mode fracture network in fractured horizontal well:a case study of Jimsar shale oil[J].Acta Petrolei Sinica,2023,44(10):1706-1726. [33] 雷群,翁定为,熊生春,等.中国石油页岩油储集层改造技术进展及发展方向[J].石油勘探与开发,2021,48(5):1035-1042. LEI Qun,WENG Dingwei,XIONG Shengchun,et al.Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation[J].Petroleum Exploration and Development,2021,48(5):1035-1042. [34] 齐洪岩,王振林,张艳宁,等.吉木萨尔凹陷芦草沟组页岩油藏甜点分类[J].新疆石油地质,2025,46(2):127-135. QI Hongyan,WANG Zhenlin,ZHANG Yanning,et al.Classification of sweet spots in shale oil reservoir of Lucaogou formation in Jimsar sag,Jurggar Basin[J].Xinjiang Petroleum Geology,2025,46(2):127-135. |