石油学报 ›› 2010, Vol. 31 ›› Issue (1): 152-156.DOI: 10.7623/syxb201001029

• 石油工程 • 上一篇    下一篇

套管放气井环空流动与电泵井合理沉没度计算方法

关成尧 1 赵国春 1 张翼翼 2 陶 军 3 朱丽莉 4   

  1. 1 中国地质大学地质过程与矿产资源国家重点实验室 北京 100083; 2 中国地质大学地球科学与资源学院 北京 100083; 3中国石油勘探开发研究院中亚俄罗斯研究部 北京 100083; 4大庆油田有限责任公司勘探开发研究院 黑龙江大庆 163712
  • 收稿日期:2009-03-28 修回日期:2009-11-20 出版日期:2010-01-25 发布日期:2010-05-21
  • 通讯作者: 关成尧

Calculation method of multi-phase flow and optimization submergence depth of electric pump in casing annulus gas-venting wells

GUAN Chengyao 1 ZHAO Guochun 1 ZHANG Yiyi 2 TAO Jun 3 ZHU Lili 4   

  • Received:2009-03-28 Revised:2009-11-20 Online:2010-01-25 Published:2010-05-21
  • Contact: GUAN Chengyao

摘要:

在套管放气状态下,环空中液体相处于停滞状态,液相和油套管之间不存在相对滑动,受油套管粗糙度影响的雷诺数失去原有的意义,不能直接应用石油工业中常用的多相流计算方法。针对国内电泵井高含气和套管需要定压放气的生产特征,对套管定压放气井油套环空多相流动的特征进行了探讨。以泰勒气泡在黏滞流体中的上升流速作为主要依据,建立了不同油黏度下套管环空放气流动的截面含气率和压降计算模型,并提出了不同黏度、不同气油比的套管定压放气井环空流动计算及套管压力分布的多相流模型,该模型主要适用于泡流和段塞流。在此基础上,将入泵流体截面含气率10%作为判据,提出了套管环空放气电泵井沉没度设计模型,并将该模型应用于国内油田不同类型油井40口,检测结果合理。

关键词: 套管放气井, 环空流体流动, 套管压力分布, 多相流模型, 电泵, 沉没度, 设计模型

Abstract:

There is no slip of viscosity liquids in casing and tubing under the condition of gas flowing out of casing head in gas-venting wells. The multi-phase flow models associated with Reynolds Number and roughness used in the petroleum industry usually lose their applicability. Based on the characteristics of casing annulus gas-venting wells, the particularity of multi-phase flow in the condition that the casing-head gas flows through a nearly stagnant liquid was investigated. Based on the theory of Taylor bubble, a model to calculate void fraction and pressure gradient in various viscosity liquids was developed. This model is applicable to bubbly flow and slug flow. The produced gas-liquid ratio of 10% at corresponding pump inlet was taken as a criterion to calculate and optimize the submergence depth of electric pump in the casing annulus of gas-venting wells. The application of this model to 40 various wells proved its reliability.

Key words: casing annulus gas-venting well, fluid flow in annulus, casing pressure distribution, multi-phase flow model, electric submersible pump(ESP), submergence depth, design model