石油学报 ›› 2021, Vol. 42 ›› Issue (9): 1202-1211.DOI: 10.7623/syxb202109007

• 油田开发 • 上一篇    下一篇

超深断溶体油藏油井动用深度确定方法及其对开发的指导意义

顾浩1, 王光付1, 杨敏2, 曹飞2, 郑松青1, 尚根华1, 朱莲花2, 韩东1, 康志江1, 赵艳艳1, 刘坤岩1, 李王鹏1   

  1. 1. 中国石油化工股份有限公司石油勘探开发研究院 北京 100083;
    2. 中国石油化工股份有限公司西北油田分公司 新疆乌鲁木齐 830011
  • 收稿日期:2020-10-08 修回日期:2021-03-25 出版日期:2021-09-25 发布日期:2021-10-12
  • 通讯作者: 顾浩,男,1989年1月生,2011年获长江大学学士学位,2016年获中国石油大学(北京)博士学位,现为中国石油化工股份有限公司石油勘探开发研究院副研究员,主要从事碳酸盐岩、稠油油藏开发工作。
  • 作者简介:顾浩,男,1989年1月生,2011年获长江大学学士学位,2016年获中国石油大学(北京)博士学位,现为中国石油化工股份有限公司石油勘探开发研究院副研究员,主要从事碳酸盐岩、稠油油藏开发工作。Email:guhao.syky@sinopec.com
  • 基金资助:
    国家自然科学基金企业联合基金项目(No.U19B6003)、中国石油化工股份有限公司科技部项目(P19026-3、P20064-3)和国家自然科学基金项目(No.41902149)资助。

A method for estimating the drainage depth of oil well in ultra-deep fault-karst reservoirs and its guiding significance to oilfield development

Gu Hao1, Wang Guangfu1, Yang Min2, Cao Fei2, Zheng Songqing1, Shang Genhua1, Zhu Lianhua2, Han Dong1, Kang Zhijiang1, Zhao Yanyan1, Liu Kunyan1, Li Wangpeng1   

  1. 1. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China;
    2. Sinopec Northwest Oil Field Company, Xinjiang Urumqi 830011, China
  • Received:2020-10-08 Revised:2021-03-25 Online:2021-09-25 Published:2021-10-12

摘要: 超深断溶体油藏是近年来在塔里木盆地发现的一种断控缝洞型碳酸盐岩油藏,油井生产过程中井底下方油气沿断裂高导流通道向井底流动。为表征油井纵向动用范围,提出了"动用深度"的概念,并建立基于井温的油井动用深度确定方法。动用深度定义为超深断溶体油藏油井生产时井底下方流体开始向上流动的位置到井底的垂向距离。在油井纵向动用位置,纵向上驱动压力梯度等于流动阻力、流速等于0、流温等于静温。利用井温法可计算油井动用深度,本质上是基于超深断溶体油藏非等温流动特征确定"热源"位置。研究认为:基于温度—深度线性关系的油井动用深度控制方程,其分母为静温梯度与流温梯度差。油嘴尺寸越大,油井动用深度越深且流体热损失越小,这均导致相同深度流静温差越大。油井动用深度概念及确定方法的提出在超深断溶体油藏油柱高度认识、储量计算、动用方式优化等方面具有重要意义。超深断溶体油藏的初始静压并不"静",基于超深断溶体油藏油井生产压差和油藏压降的油藏工程评价指标计算方法需重新建立。

关键词: 动用深度, 超深断溶体油藏, 缝洞, 流温, 静温

Abstract: Ultra-deep fault-karst reservoirs are a kind of fault-controlled fracture-cavity carbonate reservoir discovered in the Tarim Basin in recent years. During the production of oil well, both oil and gas under the bottom of well flow to the bottom hole along the high-conductivity flow channels of faults. To characterize the vertical drainage range of oil well in ultra-deep fault-karst reservoirs, this paper proposes the concept of "drainage depth", and establishes a method for estimating the drainage depth of oil wells based on well temperature. "Drainage depth" is defined as the vertical distance from the position of fluid under the bottom hole of oil well starting to flow upwards to the bottom hole during the production of oil well in ultra-deep fault-karst reservoirs. At the vertical drainage position of the oil well, vertical driving pressure gradient is equal to flow resistance, the vertical flow velocity is equal to 0 and the flow temperature is equal to static temperature. Well temperature method can be used to calculate the drainage depth of oil well. The essence of estimating the drainage depth for oil well using well temperature method is to determine "heat source" location based on non-isothermal flow characteristic of ultra-deep fault-karst reservoirs. The results show that the denominator of the governing equation of drainage depth for oil well based on the temperature-depth linear relationship is the difference between the static temperature gradient and the flow temperature gradient. The larger the nozzle size is, the deeper the drainage depth of oil well is and the lower the fluid heat loss is, which both lead to bigger measured temperature difference between flow temperature and static temperature at the same depth. The concept of drainage depth of oil well and its estimation method are of great significance to the understanding of oil column height recognition, reserves calculation and driving way optimization in ultra-deep fault-karst reservoirs. The initial static pressure of ultra-deep fault-karst reservoirs is not "static". The calculation method of reservoir engineering evaluation index based on oil well pressure difference and reservoir pressure drop in ultra-deep fault-karst reservoirs needs to be re-established.

Key words: drainage depth, ultra-deep fault-karst reservoirs, fracture-cavity, flow temperature, static temperature

中图分类号: