石油学报 ›› 2022, Vol. 43 ›› Issue (3): 386-398.DOI: 10.7623/syxb202203006

• 油田开发 • 上一篇    下一篇

CO2泡沫压裂井筒气-液-固三相流动模型

李玉伟1,2, 彭根博2, 陈勉2,3, 张军2, 魏建光2, 杨春光4   

  1. 1. 辽宁大学环境学院 辽宁沈阳 110036;
    2. 东北石油大学非常规油气研究院 黑龙江大庆 163318;
    3. 中国石油大学(北京)石油工程学院 北京 102249;
    4. 大庆油田有限责任公司第四采油厂第四油矿工艺队 黑龙江大庆 163511
  • 收稿日期:2020-12-31 修回日期:2021-10-04 发布日期:2022-04-06
  • 通讯作者: 李玉伟,男,1983年4月生,2014年获东北石油大学博士学位,现为辽宁大学环境学院教授、博士生导师,主要从事非常规油气增产改造理论与技术方面的教学和科研工作。
  • 作者简介:李玉伟,男,1983年4月生,2014年获东北石油大学博士学位,现为辽宁大学环境学院教授、博士生导师,主要从事非常规油气增产改造理论与技术方面的教学和科研工作。Email:liyuweibox@126.com
  • 基金资助:
    国家自然科学基金项目(No.52174024)、中国博士后科学基金项目(2018M640289)和黑龙江省留学回国人员择优资助项目资助。

Gas-liquid-solid three phase flow model of CO2 foam fracturing in wellbore

Li Yuwei1,2, Peng Genbo2, Chen Mian2,3, Zhang Jun2, Wei Jianguang2, Yang Chunguang4   

  1. 1. School of Environment, Liaoning University, Liaoning Shenyang 110036, China;
    2. Institute of Unconventional Oil & Gas, Northeast Petroleum University, Heilongjiang Daqing 163318, China;
    3. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
    4. The Fourth Oil Mining Technology Team of No. 4 Oil Production Plant, PetroChina Daqing Oilfield Limited Company, Heilongjiang Daqing 163511, China
  • Received:2020-12-31 Revised:2021-10-04 Published:2022-04-06

摘要: CO2泡沫压裂技术具有低伤害、易返排、节约水资源等优点,已被广泛应用于非常规油气开采,但目前CO2泡沫压裂液井筒流动模型大多只考虑气、液两相,忽略了支撑剂固相对CO2泡沫压裂液流动性的影响。通过体积平均法将支撑剂固相与CO2泡沫耦合建立气-液-固三相CO2泡沫压裂液井筒流动计算模型,并与现场压裂井实测温度数据对比,温度平均误差仅为2.7%,验证了模型的正确性。实例计算表明:支撑剂固相会使CO2泡沫压裂液井筒压力升高,井筒内温度和压力随支撑剂体积浓度的增加而增大,体积分数从0增加到0.3,井底压力增大9.0 MPa;泡沫质量增加会明显增大井筒内CO2泡沫压裂液温度;增大质量流量会导致温度和压力降低,质量流量增加10 kg/s,井底压力降低5 MPa、温度降低0.4℃。研究成果可以实现CO2泡沫压裂井筒气-液-固三相流动温度和压力等参数耦合计算。

关键词: CO2泡沫, 气-液-固三相, 流固耦合, 井筒摩阻, 温度分布, 压力分布

Abstract: CO2 foam fracturing technology is characterized by low damage, easy flowback and water conservation, so that it has been widely used in unconventional oil and gas production. However, most of the existing flow models of CO2 foam fracturing fluids in wellbore only considers gas and liquid phases, while neglecting the influence of the solid phase of proppant on the flow of CO2 foam fracturing fluids. The solid-phase proppant was coupled with CO2 foam by volumetrical average method to establish the model for calculating the flow of gas-liquid-solid phase CO2 foam fracturing fluids in wellbore. Compared with the measured temperature data of the fracturing well, the average temperature error is 2.7%, thus verifying the correctness of the model in this paper. Practical calculations show that the solid phase of proppant will increase the wellbore pressure of the CO2 foam fracturing fluids, the temperature and pressure inside the wellbore will increase with the volumetric concentration of the proppant; when the volumetric concentration increases from 0 to 0.3, the bottom hole pressure is increased by 9.0 MPa; the incrasing foam quality will significantly increase the temperature of CO2 foam fracturing fluids in wellbore; the increasing mass flow will lead to the drop of temperature and pressure; when the mass flow increases by 10 kg/s, bottom hole pressure drops by 5 MPa, and the temperature decreases by 0.4℃. The research results can help achieve the coupling calculation of parameters such as temperature and pressure of the gas-liquid-solid phase flow of CO2 foam fracturing in wellbore.

Key words: CO2 foam, gas-liquid-solid phases, fluid-solid coupling, wellbore friction, temperature distribution, pressure distribution

中图分类号: