石油学报 ›› 2022, Vol. 43 ›› Issue (6): 871-884.DOI: 10.7623/syxb202206011

• 石油工程 • 上一篇    下一篇

砾岩储层水力裂缝扩展形态及影响因素

唐慧莹1, 梁海鹏1, 张烈辉1, 覃建华2, 李扬3, 张景2   

  1. 1. 西南石油大学油气藏地质及开发工程国家重点实验室 四川成都 610500;
    2. 中国石油新疆油田公司勘探开发研究院 新疆克拉玛依 834000;
    3. 西南石油大学机电工程学院 四川成都 610500
  • 收稿日期:2021-07-10 修回日期:2022-01-05 发布日期:2022-06-28
  • 通讯作者: 张烈辉,男,1967年5月生,1995获西南石油学院博士学位,现为西南石油大学教授、博士生导师,主要从事油气渗流理论研究。Email:zhangliehui@vip.163.com
  • 作者简介:唐慧莹,女,1990年2月生,2017年获北京大学博士学位,现为西南石油大学石油与天然气工程学院副教授,主要从事非常规储层压裂及一体化模拟相关研究。Email:tanghuiying@swpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51904257,No.51874251)资助。

Hydraulic fracture extension patterns of conglomerate reservoirs and relevant influencing factors

Tang Huiying1, Liang Haipeng1, Zhang Liehui1, Qin Jianhua2, Li Yang3, Zhang Jing2   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Sichuan Chengdu 610500, China;
    2. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Xinjiang Karamay 834000, China;
    3. School of Mechatronic Engineering, Southwest Petroleum University, Sichuan Chengdu 610500, China
  • Received:2021-07-10 Revised:2022-01-05 Published:2022-06-28

摘要: 水力压裂技术已成为致密油气储层增产改造的主要措施之一。目前针对水力裂缝形态的研究主要集中在致密砂岩及页岩储层,以玛湖油田为代表的砾岩致密油储层由于其发现时间较晚,相关研究较为缺乏。砾岩储层非均质性较强,砾石的存在进一步加大了水力裂缝形态研究的难度。基于有限元中的内聚力模型实现了大型物理模拟实验尺度下基质和砾石的差异化表征,并通过现有实验结果,验证了模型的可行性。在此基础上,开展了影响砾岩储层裂缝形态扩展关键因素机理研究,明确了储层在低应力差下主要表现为绕砾和分叉,高应力差则以穿砾、转向为主的特征行为。在机理研究的基础上,结合现场压裂施工数据、有限元机理模型结果及微地震监测结果,基于边界元方法,论证了可采用等效天然裂缝的方式对砾岩宏观人工裂缝扩展过程进行模拟,并得出水力裂缝在宏观上以双翼缝特征为主,主缝周边可能存在小尺度分支缝的认识。基于现场压裂井的裂缝扩展模拟,验证了宏观裂缝形态的准确性。

关键词: 砾岩储层, 水力压裂, 内聚力模型, 边界元方法, 多尺度模拟

Abstract: Hydraulic fracturing technology has become one of the main stimulation measures for tight oil and gas reservoirs. At present, the investigations on hydraulic fracture morphology are mainly focused on tight sandstone and shale reservoirs; due to late discovery, there is less research on the conglomerate tight oil reservoirs, represented by Mahu oilfield. The conglomerate reservoirs are characterized with a high degree of heterogeneity, and the presence of conglomerates further increases the difficulty in research of the hydraulic fracture morphology. Based on the cohesive zone finite element-based model, the differential characterization of matrix and conglomerate at the scale of large physical simulation experiments has been realized, and the feasibility of the model has been verified by the available experimental results. On this basis, a mechanism study of key factors affecting the propagation of hydraulic fracture in conglomerate reservoirs has been performed, thus clarifying the characteristic behaviors of conglomerate reservoirs, i.e., shown as gravel-bypassing and bifurcation under a low stress difference, and gravel-penetrating and turning under a high stress difference. Based on the mechanism study and the boundary element method, in combination with the on-site fracturing treatment data, finite element mechanistic model results and micro-seismic monitoring data, this study has proved that the macroscopic hydraulic fracture propagation processin conglomerate reservoirs can be simulated using equivalent natural fractures, and also obtained the understanding that the hydraulic fractures can be characterized as bifurcated fractures on a macroscopic scale, and small-scale branched fractures may exist around the main fractures. The accuracy of macroscopic fracture geometry has been verified based on fracture propagation simulations in actual fractured wells.

Key words: conglomerate reservoir, hydraulic fracture, cohesive zone model, boundary element method, multiscale simulation

中图分类号: