石油学报 ›› 2023, Vol. 44 ›› Issue (7): 1118-1128.DOI: 10.7623/syxb202307008

• 油田开发 • 上一篇    下一篇

催化空气驱技术低温氧化催化机理及油藏适应性

王腾飞1, 王亮亮2, 王杰祥2, 范海明2, 柏宗宪3, 宋伟2, 陈毅2   

  1. 1. 长江大学化学与环境工程学院 湖北荆州 434023;
    2. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    3. 中国石油冀东油田公司新能源事业部 河北唐山 063004
  • 收稿日期:2022-12-01 修回日期:2023-05-04 出版日期:2023-07-25 发布日期:2023-08-08
  • 通讯作者: 王亮亮,男,1994年1月生,2020年获西南石油大学硕士学位,现为中国石油大学(华东)油气田开发工程专业博士研究生,主要从事注空气提高采收率技术研究与应用工作。Email:llwang2017@163.com
  • 作者简介:王腾飞,男,1987年10月生,2016年获中国石油大学(华东)博士学位,现为长江大学化学与环境工程学院讲师,主要从事油田化学与注空气提高采收率技术研究与应用工作。Email:wangtengfeiforever@126.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(No.42202182)、山东省自然科学基金面上项目(ZR2021ME006)、中国石油大学(华东)研究生创新基金项目和中央高校基本科研业务费专项资金项目(23CX04050A)资助。

Low-temperature oxidation catalysis mechanism and oil reservoir adaptability of catalytic air flooding technique

Wang Tengfei1, Wang Liangliang2, Wang Jiexiang2, Fan Haiming2, Bai Zongxian3, Song Wei2, Chen Yi2   

  1. 1. College of Chemistry & Environmental Engineering, Yangtze University, Hubei Jingzhou 434023, China;
    2. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    3. New Energy Business Department, PetroChina Jidong Oilfield Company, Hebei Tangshan 063004, China
  • Received:2022-12-01 Revised:2023-05-04 Online:2023-07-25 Published:2023-08-08

摘要: 注空气采油技术是提高原油采收率的重要方式之一。针对轻质油藏注空气采油技术现场应用安全问题,以3种原油为研究对象,开展了低温氧化催化机理及油藏适应性研究。首先,采用静态低温氧化催化实验对催化剂进行优选;其次,运用氧化动力学结合热重-红外联用(TG-FTIR),分析低温氧化催化机理;最后,通过长氧化管填砂模型动态氧化实验,研究催化剂油藏适应性,优化催化剂应用条件。研究结果表明:铜、铁、锰和钴等过渡金属的有机盐具有优异的低温氧化催化效果及较好的普适性,可以加快不同原油低温氧化(LTO)反应进程,优选环烷酸钴为原油低温氧化反应催化剂。环烷酸钴能够激发原油及其四族组分(SARA)低温氧化反应活性。以芳香分为例,加入环烷酸钴前后LTO反应活化能由35 606J/mol减小至19 849J/mol,降幅高达44.3%。环烷酸钴对原油及其SARA组分加氧和断键反应催化作用明显。油田现场应用注空气技术时推荐采用催化剂/空气交替段塞注入,对于水驱见水油藏,应在产水率< 30%时转催化空气驱。催化空气驱技术在储层温度低于90℃的轻质油藏中应用潜力更大。

关键词: 注空气, 低温催化氧化, 四族组分, 动力学, 催化机理

Abstract: The air injection oil recovery technique is one of the important ways to improve oil recovery efficiency. In view of the safety problems during field application of air injection technique in light oil reservoirs, a study of low-temperature catalytic mechanism and oil reservoir adaptability was conducted on three types of crude oil. Firstly, the catalyst was optimized by static low-temperature oxidation catalysis experiment; secondly, low-temperature oxidation catalysis mechanism was analyzed by oxidation kinetics in combination with thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR); finally, oil reservoir adaptability was investigated and the catalyst application conditions were optimized through the dynamic oxidation experiment based on the sand-packed model of long oxidation tube. The results show that the organic salts of transition metals such as copper, iron, manganese, and cobalt have excellent low-temperature oxidation catalytic effect and better universality, and can speed up the low-temperature oxidation (LTO) reaction process of different crude oil, so that cobalt naphthenate is optimized as the catalyst for low-temperature oxidation of crude oil. In fact, cobalt naphthenate can stimulate the LTO reactivity of crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) fractions. Taking aromatics for an example, the activation energy of LTO reaction before and after adding cobalt naphthenate is dropped from 35 606 to 19 849 J/mol, decreased by 44.3%. Besides, cobalt naphthenate has an obvious catalytic effect on oxygen addition and bond-breaking reactions of crude oil and its SARA fractions. Therefore, catalyst/air alternate slug injection is recommended when the air injection technique is applied in the oilfield. For water-flooding reservoirs, catalytic air flooding shall be adopted instead when the water production rate is lower than 30%. It can be seen that the catalytic air flooding technique applied in light oil reservoirs below the temperature of 90℃ has a great application potential.

Key words: air injection, low-temperature catalytic oxidation, SARA fractions, kinetics, catalytic mechanism

中图分类号: