石油学报 ›› 2017, Vol. 38 ›› Issue (1): 84-90.DOI: 10.7623/syxb201701009

• 油田开发 • 上一篇    下一篇

考虑稠油非牛顿性质的蒸汽吞吐产能预测模型

杨戬1,2, 李相方2, 陈掌星2,3, 田冀1, 黄亮2, 刘新光1   

  1. 1. 海洋石油高效开发国家重点实验室 北京 102200;
    2. 中国石油大学石油工程学院 北京 102249;
    3. 卡尔加里大学化学与石油工程学院 加拿大卡尔加里 T2N1N4
  • 收稿日期:2016-04-11 修回日期:2016-09-04 出版日期:2017-01-25 发布日期:2017-01-23
  • 通讯作者: 李相方,男,1955年5月生,1982年获石油大学(华东)学士学位,1992年获石油大学(北京)博士学位,现为中国石油大学(北京)石油工程学院教授、博士生导师,主要从事非常规油气渗流及开发的研究工作。Email:lixf2013@vip.163.com
  • 作者简介:杨戬,男,1989年3月生,2011年获中国石油大学(华东)石油工程专业学士学位,现为中国石油大学(北京)油气田开发工程专业博士研究生,主要从事油藏工程及渗流理论的研究。Email:yangjian315@126.com
  • 基金资助:

    海洋石油高效开发国家重点实验室开放基金项目(2015-YXKJ-001)资助。

A productivity prediction model for cyclic steam stimulation in consideration of non-Newtonian characteristics of heavy oil

Yang Jian1,2, Li Xiangfang2, Chen Zhangxing2,3, Tian Ji1, Huang Liang2, Liu Xinguang1   

  1. 1. State Key Laboratory of Offshore Oil Exploitation, Beijing 102200, China;
    2. School of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
    3. Institute of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N1N4, Canada
  • Received:2016-04-11 Revised:2016-09-04 Online:2017-01-25 Published:2017-01-23

摘要:

与常规油不同,当达到某特定温度时,稠油呈现牛顿流体状态,而在该温度值以下时,稠油呈现非牛顿流体状态,即存在启动压力梯度。经典的解析模型将蒸汽吞吐分为热区与冷区2个部分,热区温度为蒸汽温度,冷区温度为原始地层温度。然而在实际过程中,热区到冷区的温度是一个非等温的渐变过程,不会存在热区与冷区的边界处的突变现象。而且在生产过程中,稠油在不同区域呈现牛顿流体与非牛顿流体2种状态,不同区域的稠油渗流方程不同。针对这种情况,基于Marx-Langenheim方程,对蒸汽吞吐的解析模型进行了改进。在注入阶段,考虑了热区非等温分布的特征;在生产阶段,考虑了稠油牛顿流体区与非牛顿流体区的渗流耦合。模型应用结果表明,该模型更加接近实际生产情况,有较好的应用价值。

关键词: 蒸汽吞吐, 非牛顿性质, 启动压力梯度, 产能预测, 耦合渗流

Abstract:

Unlike conventional oil, heavy oil exhibits Newtonian fluid state when it reaches a specified temperature. Specifically, heavy oil shows non-Newtonian fluid state at a temperature below the specified value, i.e., a threshold pressure gradient occurs. In a classical analytical model, the reservoir for cyclic steam stimulation is divided into hot zone and cold zone; the temperature of hot zone is steam temperature while that of cold zone is initial formation temperature. However, in practice, temperature transition from hot zone to cold zone is a non-isothermal gradual change process, and no abrupt change will occur at the boundary between hot zone and cold zone. Moreover, during production, heavy oil presents two states in different zones, i.e., Newtonian fluid and non-Newtonian fluid; correspondingly, heavy oil flow equations are also different. In light of the two points above, the analytical model of cyclic steam stimulation was modified on the basis of Marx-Langenheim equations. Considerations included non-isothermal distribution characteristics of hot zone during injection stage and flow coupling of heavy oil in Newtonian fluid zone and non-Newtonian fluid zone during production stage. The results of the model application shows that this model is more close to actual production situation and has better applicability.

Key words: cyclic steam stimulation, non-Newtonian characteristics, threshold pressure gradient, productivity prediction, coupled flow

中图分类号: