石油学报 ›› 2023, Vol. 44 ›› Issue (1): 207-222.DOI: 10.7623/syxb202301013
钟俊杰1, 王曾定1, 孙志刚2, 姚军1, 杨永飞1, 孙海1, 张磊1, 张凯1
收稿日期:
2022-05-17
修回日期:
2022-11-16
出版日期:
2023-01-25
发布日期:
2023-02-14
通讯作者:
钟俊杰,男,1993年1月生,2018年获多伦多大学博士学位,现为中国石油大学(华东)石油工程学院教授,主要从事油气微纳米流控芯片技术的相关研究工作。
作者简介:
钟俊杰,男,1993年1月生,2018年获多伦多大学博士学位,现为中国石油大学(华东)石油工程学院教授,主要从事油气微纳米流控芯片技术的相关研究工作。Email:zhongjunjie@upc.edu.cn
基金资助:
Zhong Junjie1, Wang Zengding1, Sun Zhigang2, Yao Jun1, Yang Yongfei1, Sun Hai1, Zhang Lei1, Zhang Kai1
Received:
2022-05-17
Revised:
2022-11-16
Online:
2023-01-25
Published:
2023-02-14
摘要: 页岩储层的孔隙尺寸主体是纳米级,在纳米尺度下流体的流动机理和相态特征受到尺度效应和壁面效应的显著影响而偏离经典理论描述,致使常规油气藏中的流体特征认知不完全适用于页岩油气藏,从根源上制约着页岩油气的高效开发。因此,明确页岩储层在纳米孔隙尺度下的微观流体特征具有显著的科学意义和工程价值。纳米流控技术具备纳米级孔隙精准制备和原位可视化检测的特点,为页岩油气微观渗流与相态特征的研究提供了全新的实验视角,也为纳米尺度下流体特征的理论研究提供了实验依据。对纳米流控实验技术进行了介绍,并回顾了基于该技术在纳米尺度下油气水的单相及两相流动规律、单组分烃及多组分烃相态特征、扩散与混相过程,以及页岩储层微观物理模型的最新研究进展,重点梳理了页岩储层微观流体特征的纳米流控实验研究方法、实验结果以及与理论研究间的对照情况。同时指出了当前纳米流控技术在研究页岩储层微观流体特征中存在的不足,展望了今后的发展方向。
中图分类号:
钟俊杰, 王曾定, 孙志刚, 姚军, 杨永飞, 孙海, 张磊, 张凯. 基于纳米流控技术的页岩储层微观流体特征研究进展[J]. 石油学报, 2023, 44(1): 207-222.
Zhong Junjie, Wang Zengding, Sun Zhigang, Yao Jun, Yang Yongfei, Sun Hai, Zhang Lei, Zhang Kai. Research advances in microscale fluid characteristics of shale reservoirs based on nanofluidic technology[J]. Acta Petrolei Sinica, 2023, 44(1): 207-222.
[1] EIA.Country analysis executive summary:China[R].Washington:U.S.E I A, 2020. [2] EIA.Technically recoverable shale oil and shale gas resources:China[R].Washington:U.S.EIA, 2015. [3] 孙龙德, 邹才能, 贾爱林, 等.中国致密油气发展特征与方向[J].石油勘探与开发, 2019, 46(6):1015-1026. SUN Longde, ZOU Caineng, JIA Ailin, et al.Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development, 2019, 46(6):1015-1026. [4] 金之钧, 王冠平, 刘光祥, 等.中国陆相页岩油研究进展与关键科学问题[J].石油学报, 2021, 42(7):821-835. JIN Zhijun, WANG Guanping, LIU Guangxiang, et al.Research progress and key scientific issues of continental shale oil in China[J].Acta Petrolei Sinica, 2021, 42(7):821-835. [5] 邹才能, 赵群, 丛连铸, 等.中国页岩气开发进展、潜力及前景[J].天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al.Development progress, potential and prospect of shale gas in China[J].Natural Gas Industry, 2021, 40(6):1-14. [6] LOUCKS R G, REED R M, RUPPEL S C, et al.Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research, 2009, 79(12):848-861. [7] 朱汉卿, 贾爱林, 位云生, 等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报, 2018, 39(4):391-401. ZHU Hanqing, JIA Ailin, WEI Yunsheng, et al.Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin[J].Acta Petrolei Sinica, 2018, 39(4):391-401. [8] JAVADPOUR F, FISHER D, UNSWORTH M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology, 2007, 46(10):55-61. [9] ZHANG Kaiqiang, JIA Na, LI Songyan, et al.Thermodynamic phase behaviour and miscibility of confined fluids in nanopores[J].Chemical Engineering Journal, 2018, 351:1115-1128. [10] WACHTMEISTER H, LUND L, ALEKLETT K, et al.Production decline curves of tight oil wells in eagle ford shale[J].Natural Resources Research, 2017, 26(3):365-377. [11] FANCHI J R.Decline curve analysis of shale oil production using a constrained Monte Carlo technique[J].Journal of Basic & Applied Sciences, 2020, 16(1):61-67. [12] HÖÖK M, HIRSCH R, ALEKLETT K.Giant oil field decline rates and their influence on world oil production[J].Energy Policy, 2009, 37(6):2262-2272. [13] SHENG J J.Enhanced oil recovery in shale reservoirs by gas injection[J].Journal of Natural Gas Science and Engineering, 2015, 22:252-259. [14] ZHANG Wei, FENG Qihong, WANG Sen, et al.Oil diffusion in shale nanopores:insight of molecular dynamics simulation[J].Journal of Molecular Liquids, 2019, 290:111183. [15] SHENG Guanglong, SU Yuliang, ZHAO Hui, et al.A unified apparent porosity/permeability model of organic porous media:coupling complex pore structure and multi-migration mechanism[J].Advances in Geo-Energy Research, 2020, 4(2):115-125. [16] YANG Yongfei, WANG Ke, ZHANG L, et al.Pore-scale simulation of shale oil flow based on pore network model[J].Fuel, 2019, 251:683-692. [17] ZHANG Kaiqiang, JIA Na, LIU Lirong.CO2 storage in fractured nanopores underground:phase behaviour study[J].Applied Energy, 2019, 238:911-928. [18] LI Zhidong, JIN Zhehui, FIROOZABADI A.Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory[J].SPE Journal, 2014, 19(6):1096-1109. [19] BOCQUET L.Nanofluidics coming of age[J].Nature Materials, 2020, 19(3):254-256. [20] XU Yan.Nanofluidics:a new arena for materials science[J].Advanced Materials, 2018, 30(3):1702419. [21] 李俊键, 苏航, 姜汉桥, 等.微流控模型在油气田开发中的应用[J].石油科学通报, 2018, 3(3):284-301. LI Junjian, SU Hang, JIANG Hanqiao, et al.Application of microfluidic models in oil and gas field development[J].Petroleum Science Bulletin, 2018, 3(3):284-301. [22] 鲍博, 史嘉威, 冯嘉, 等.基于微流控技术的表面活性剂强化驱油研究进展[J].石油学报, 2022, 43(3):432-442. BAO Bo, SHI Jiawei, FENG Jia, et al.Research progress of surfactant enhanced oil recovery based on microfluidics technology[J].Acta Petrolei Sinica, 2022, 43(3):432-442. [23] DUAN Chuanhua, WANG Wei, XIE Quan.Review article:fabrication of nanofluidic devices[J].Biomicrofluidics, 2013, 7(2):026501. [24] TSUJI T, MATSUMOTO Y, KAWANO S.Flow with nanoparticle clustering controlled by optical forces in quartz glass nanoslits[J].Microfluidics and Nanofluidics, 2019, 23(11):126. [25] PENG Ran, LI Dongqing.Fabrication of polydimethylsiloxane (PDMS)nanofluidic chips with controllable channel size and spacing[J].Lab on a Chip, 2016, 16(19):3767-3776. [26] BONDUR J A.Dry process technology (reactive ion etching)[J].Journal of Vacuum Science and Technology, 1976, 13(5):1023-1029. [27] PAL P, SWARNALATHA V, RAO A V N, et al.High speed silicon wet anisotropic etching for applications in bulk micromachining:a review[J].Micro and Nano Systems Letters, 2021, 9(1):4. [28] OZAYDIN-INCE G, COCLITE A M, GLEASON K K.CVD of polymeric thin films:applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes[J].Reports on Progress in Physics, 2011, 75(1):016501. [29] MAO Pan, HAN J.Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes[J].Lab on a Chip, 2009, 9(4):586-591. [30] YANG Qian, SUN P Z, FUMAGALLI L, et al.Capillary condensation under atomic-scale confinement[J].Nature, 2020, 588(7837):250-253. [31] XIE Quan, ALIBAKHSHI M A, JIAO Shuping, et al.Fast water transport in graphene nanofluidic channels[J].Nature Nanotechnology, 2018, 13(3):238-245. [32] WANG Luda, BOUTILIER M S H, KIDAMBI P R, et al.Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J].Nature Nanotechnology, 2017, 12(6):509-522. [33] SCHOCH R B, HAN J, RENAUD P.Transport phenomena in nanofluidics[J].Reviews of Modern Physics, 2008, 80(3):839-883. [34] SPARREBOOM W, VAN DEN BERG A, EIJKEL J C T.Principles and applications of nanofluidic transport[J].Nature Nanotechnology, 2009, 4(11):713-720. [35] SUN Fengrui, YAO Yuedong, LI Guozhen, et al.Transport behaviors of real gas mixture through nanopores of shale reservoir[J].Journal of Petroleum Science and Engineering, 2019, 177:1134-1141. [36] WANG Hui, CHEN Li, QU Zhiguo, et al.Modeling of multi-scale transport phenomena in shale gas production-a critical review[J].Applied Energy, 2020, 262:114575. [37] SUN Zheng, LI Xiangfang, LIU Wenyuan, et al.Molecular dynamics of methane flow behavior through realistic organic nanopores under geologic shale condition:pore size and kerogen types[J].Chemical Engineering Journal, 2020, 398:124341. [38] SONG Wenhui, YAO Jun, WANG Dongying, et al.Dynamic pore network modelling of real gas transport in shale nanopore structure[J].Journal of Petroleum Science and Engineering, 2020, 184:106506. [39] ZHONG Junjie, ZANDAVI S H, LI Huawei, et al.Condensation in one-dimensional dead-end nanochannels[J].ACS Nano, 2017, 11(1):304-313. [40] ZHONG Junjie, RIORDON J, ZANDAVI S H, et al.Capillary condensation in 8 nm deep channels[J].The Journal of Physical Chemistry Letters, 2018, 9(3):497-503. [41] RADHA B, ESFANDIAR A, WANG F C, et al.Molecular transport through capillaries made with atomic-scale precision[J].Nature, 2016, 538(7624):222-225. [42] KAST W, HOHENTHANNER C R.Mass transfer within the gas-phase of porous media[J].International Journal of Heat and Mass Transfer, 2000, 43(5):807-823. [43] JATUKARAN A, ZHONG Junjie, PERSAD A H, et al.Direct visualization of evaporation in a two-dimensional nanoporous model for unconventional natural gas[J].ACS Applied Nano Materials, 2018, 1(3):1332-1338. [44] GRUENER S, HUBER P.Knudsen diffusion in silicon nanochannels[J].Physical Review Letters, 2008, 100(6):064502. [45] PERSAD A H, WARD C A.Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation[J].Chemical Reviews, 2016, 116(14):7727-7767. [46] AL HINAI A, REZAEE R, ESTEBAN L, et al.Comparisons of pore size distribution:a case from the western Australian gas shale Formations[J].Journal of Unconventional Oil and Gas Resources, 2014, 8:1-13. [47] KEERTHI A, GEIM A K, JANARDANAN A, et al.Ballistic molecular transport through two-dimensional channels[J].Nature, 2018, 558(7710):420-424. [48] ZHANG Linyang, WU Keliu, CHEN Zhangxin, et al.Quasi-continuum water flow under nanoconfined conditions:coupling the effective viscosity and the slip length[J].Industrial & Engineering Chemistry Research, 2020, 59(46):20504-20514. [49] HUANG D M, SENDNER C, HORINEK D, et al.Water slippage versus contact angle:a quasiuniversal relationship[J].Physical Review Letters, 2008, 101(22):226101. [50] WASHBURN E W.The dynamics of capillary flow[J].Physical Review, 1921, 17(3):273-283. [51] TAS N R, HANEVELD J, JANSEN H V, et al.Capillary filling speed of water in nanochannels[J].Applied Physics Letters, 2004, 85(15):3274-3276. [52] KEERTHI A, GOUTHAM S, YOU Yi, et al.Water friction in nanofluidic channels made from two-dimensional crystals[J].Nature Communications, 2021, 12(1):3092. [53] FENG Dong, LI Xiangfang, WANG Xiangzeng, et al.capillary filling of confined water in nanopores:coupling the increased viscosity and slippage[J].Chemical Engineering Science, 2018, 186:228-239. [54] LI Huawei, ZHONG Junjie, PANG Yuanjie, et al.Direct visualization of fluid dynamics in sub-10 nm nanochannels[J].Nanoscale, 2017, 7(27):9556-9561. [55] MOZAFFARI S, TCHOUKOV P, MOZAFFARI A, et al.Capillary driven flow in nanochannels-Application to heavy oil rheology studies[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 513:178-187. [56] 刘礼军, 姚军, 孙海, 等.考虑启动压力梯度和应力敏感的页岩油井产能分析[J].石油钻探技术, 2017, 45(5):84-91. LIU Lijun, YAO Jun, SUN Hai, et al.The effect of threshold pressure gradient and stress sensitivity on shale oil reservoir productivity[J].Petroleum Drilling Techniques, 2017, 45(5):84-91. [57] 张世铭, 王建功, 张永庶, 等.柴达木盆地西部地区下干柴沟组湖相白云岩晶间孔型储层物性下 限的确定[J].石油学报, 2021, 42(1):45-55. ZHANG Shiming, WANG Jiangong, ZHANG Yongshu, et al.Determination of petrophysical property cutoffs of lacustrine dolomite intercrystalline pore reservoir in the Xiaganchaigou Formation, western Qaidam Basin[J].Acta Petrolei Sinica, 2021, 42(1):45-55. [58] WU Qihua, OK J T, SUN Yongpeng, et al.Optic imaging of single and two-phase pressure-driven flows in nano-scale channels[J].Lab on a Chip, 2013, 13(6):1165-1171. [59] KAZOE Y, UGAJIN T, OHTA R, et al.Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction[J].Lab on a Chip, 2019, 19(22):3844-3852. [60] LIU Songyuan, MA Yinfa, BAI Baojun.Flow patterns of oil-water two-phase flow during pressure-driven process in nanoscale fluidic chips[J].Microfluidics and Nanofluidics, 2018, 22(4):39. [61] 李耀华, 宋岩, 徐兴友, 等.鄂尔多斯盆地延长组7段凝灰质页岩油层的润湿性及自发渗吸特征[J].石油学报, 2020, 41(10):1229-1237. LI Yaohua, SONG yan, XU Xingyou, et al.Wettability and spontaneous imbibition characteristics of the tuffaceous shale reservoirs in the Member 7 of Yanchang Formation, Ordos Basin[J].Acta Petrolei Sinica, 2020, 41(10):1229-1237. [62] ZHONG Junjie, TALEBI S, XU Yi, et al.Fluorescence in sub-10 nm channels with an optical enhancement layer[J].Lab on a Chip, 2018, 18(4):568-573. [63] YANG S Y, YANG J A, KIM E S, et al.Single-file diffusion of protein drugs through cylindrical nanochannels[J].ACS Nano, 2010, 4(7):3817-3822. [64] BALDUCCI A, MAO Pan, HAN J, et al.Double-stranded DNA diffusion in slitlike nanochannels[J].Macromolecules, 2006, 39(18):6273-6281. [65] YANG Qi, JIN Bikai, BANERJEE D, et al.Direct visualization and molecular simulation of dewpoint pressure of a confined fluid in sub-10 nm slit pores[J].Fuel, 2019, 235:1216-1223. [66] BAO Bo, ZANDAVI S H, LI Huawei, et al.Bubble nucleation and growth in nanochannels[J].Physical Chemistry Chemical Physics, 2017, 19(12):8223-8229. [67] ZHONG Junjie, ZHAO Yinuo, LU Chang, et al.Nanoscale phase measurement for the shale challenge:multicomponent fluids in multiscale volumes[J].Langmuir, 2018, 34(34):9927-9935. [68] XU Yi, EDWARDS J P, ZHONG Junjie, et al.Oxygen-tolerant electroproduction of C2 products from simulated flue gas[J].Energy & Environmental Science, 2020, 13(2):554-561. [69] 王金伟, 侯晨虹, 王涛, 等.加拿大Duvernay页岩凝析气藏水平井合理井距研究[J].石油地质与工程, 2021, 35(4):43-47. WANG Jinwei, HOU Chenhong, WANG Tao, et al.Study on reasonable well spacing of horizontal wells in DUVERNAY shale condensate gas reservoir in Canada[J].Petroleum Geology and Engineering, 2021, 35(4):43-47. [70] NGUYEN P, MOHADDES D, RIORDON J, et al.Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils[J].Analytical Chemistry, 2015, 87(6):3160-3164. [71] BAO Bo, FENG Jia, QIU Junjie, et al.Direct measurement of minimum miscibility pressure of decane and CO2 in nanoconfined channels[J]. ACS Omega, 2020, 6(1):943-953. [72] SONG Yilei, SONG Zhaojie, GUO Jia, et al.Phase behavior and miscibility of CO2-hydrocarbon mixtures in shale nanopores[J].Industrial & Engineering Chemistry Research, 2021, 60(14):5300-5309. [73] UNGAR F, AHITAN S, WORTHING S, et al.A new fluidics method to determine minimum miscibility pressure[J].Journal of Petroleum Science and Engineering, 2022, 208:109415. [74] PORTER M L, JIMÉNEZ-MARTÍNEZ J, MARTINEZ R, et al.Geo-material microfluidics at reservoir conditions for subsurface energy resource applications[J].Lab on a Chip, 2015, 15(20):4044-4053. [75] NGUYEN P, CAREY J W, VISWANATHAN H S, et al.Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments[J].Applied Energy, 2018, 230:160-174. [76] HASHAM A A, ABEDINI A, JATUKARAN A, et al.Visualization of fracturing fluid dynamics in a nanofluidic chip[J].Journal of Petroleum Science and Engineering, 2018, 165:181-186. [77] ZHANG Yandong, ZHOU Chuanle, QU Chuang, et al.Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media[J].Lab on a Chip, 2019, 19(24):4071-4082. [78] KELLY S A, TORRES-VERDÍN C, BALHOFF M T.Subsurface to substrate:dual-scale micro/nanofluidic networks for investigating transport anomalies in tight porous media[J].Lab on a Chip, 2016, 16(15):2829-2839. [79] ZHONG Junjie, ABEDINI A, XU Lining, et al.Nanomodel visualization of fluid injections in tight formations[J].Nanoscale, 2018, 10(46):21994-22002. [80] JATUKARAN A, ZHONG Junjie, ABEDINI A, et al.Natural gas vaporization in a nanoscale throat connected model of shale:multi-scale, multi -component and multi-phase[J].Lab on a Chip, 2019, 19(2):272-280. |
[1] | 李祯, 郭奇, 卜亚辉, 胡慧芳. 基于深度学习的饱和度场样本库建立及预测[J]. 石油学报, 2024, 45(4): 698-707. |
[2] | 陈志明, Yu Wei, 石璐铭, 胡连博, 廖新维. 压裂水平井的多模式裂缝网络试井模型及参数评价——以吉木萨尔页岩油为例[J]. 石油学报, 2023, 44(10): 1706-1726. |
[3] | 王顺, 王敬, 刘慧卿, 姬泽敏, 胡改星. 表面活性剂辅助残余油剥离机制的分子模拟[J]. 石油学报, 2023, 44(3): 518-533. |
[4] | 王子杰, 姚军, 孙海, 刘礼军, 严侠. 中—低成熟度页岩油藏原位转化热-反应流耦合数值模拟[J]. 石油学报, 2022, 43(10): 1462-1473. |
[5] | 卢海龙, 尚世龙, 陈雪君, 秦绪文, 古利娟, 邱海峻. 天然气水合物开发数值模拟器研究进展及发展趋势[J]. 石油学报, 2021, 42(11): 1516-1530. |
[6] | 赵平起, 马跃华, 冯许魁, 李洪革, 何书梅, 韩斯成. 油藏渗流场地球物理表征方法[J]. 石油学报, 2021, 42(5): 634-640. |
[7] | 糜利栋. 基于产气剖面的页岩气离散裂缝网络反演方法[J]. 石油学报, 2021, 42(4): 481-491. |
[8] | 李晔帆, 张迎春, 刘显东, 张弛, 陆现彩. 沥青质在高定向热解石墨表面络合机制的分子动力学模拟[J]. 石油学报, 2020, 41(5): 592-603. |
[9] | 窦晓峰, 宁伏龙, 李彦龙, 刘昌岭, 孙嘉鑫, 李杨, 李晓东, 赵颖杰, 张凌, 刘乐乐. 基于连续-离散介质耦合的水合物储层出砂数值模拟[J]. 石油学报, 2020, 41(5): 629-642. |
[10] | 冯其红, 徐世乾, 任国通, 王森, 李昱垚. 致密油多级压裂水平井井网参数分级优化[J]. 石油学报, 2019, 40(7): 830-838. |
[11] | 刘伟, 赵辉, 雷占祥, 陈增顺, 曹琳, 张凯. 基于单井敏感性局域化EnKF的油藏辅助历史拟合方法[J]. 石油学报, 2019, 40(6): 716-725. |
[12] | 苏皓, 雷征东, 李俊超, 龚斌, 赵文琪, 鞠斌山, 张荻萩, 秦鹤. 储集层多尺度裂缝高效数值模拟模型[J]. 石油学报, 2019, 40(5): 587-593,634. |
[13] | 糜利栋, 姜汉桥, 胡向阳, 李俊键, 胡小虎, 周元龙, 贾英, 严必成. 复杂裂缝网络页岩气藏自适应网格剖分方法[J]. 石油学报, 2019, 40(2): 197-206. |
[14] | 朱海燕, 沈佳栋, 周汉国. 支撑裂缝导流能力的数值模拟[J]. 石油学报, 2018, 39(12): 1410-1420. |
[15] | 刘文超, 刘曰武, 朱维耀, 孙贺东. 基于二阶B样条的ILK流量反褶积算法改进及应用[J]. 石油学报, 2018, 39(3): 327-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1