石油学报 ›› 2023, Vol. 44 ›› Issue (1): 207-222.DOI: 10.7623/syxb202301013

• 石油工程 • 上一篇    下一篇

基于纳米流控技术的页岩储层微观流体特征研究进展

钟俊杰1, 王曾定1, 孙志刚2, 姚军1, 杨永飞1, 孙海1, 张磊1, 张凯1   

  1. 1. 中国石油大学(华东)石油工程学院 山东青岛 266555;
    2. 中国石油化工股份有限公司胜利油田分公司勘探开发研究院 山东东营 257015
  • 收稿日期:2022-05-17 修回日期:2022-11-16 出版日期:2023-01-25 发布日期:2023-02-14
  • 通讯作者: 钟俊杰,男,1993年1月生,2018年获多伦多大学博士学位,现为中国石油大学(华东)石油工程学院教授,主要从事油气微纳米流控芯片技术的相关研究工作。
  • 作者简介:钟俊杰,男,1993年1月生,2018年获多伦多大学博士学位,现为中国石油大学(华东)石油工程学院教授,主要从事油气微纳米流控芯片技术的相关研究工作。Email:zhongjunjie@upc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(No.52174051)和山东省优秀青年基金(海外)项目(2022HWYQ-072)资助。第一作者及

Research advances in microscale fluid characteristics of shale reservoirs based on nanofluidic technology

Zhong Junjie1, Wang Zengding1, Sun Zhigang2, Yao Jun1, Yang Yongfei1, Sun Hai1, Zhang Lei1, Zhang Kai1   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266555, China;
    2. Exploration and Development Research Institute, Sinopec Shengli Oilfield Company, Shandong Dongying 257015, China
  • Received:2022-05-17 Revised:2022-11-16 Online:2023-01-25 Published:2023-02-14

摘要: 页岩储层的孔隙尺寸主体是纳米级,在纳米尺度下流体的流动机理和相态特征受到尺度效应和壁面效应的显著影响而偏离经典理论描述,致使常规油气藏中的流体特征认知不完全适用于页岩油气藏,从根源上制约着页岩油气的高效开发。因此,明确页岩储层在纳米孔隙尺度下的微观流体特征具有显著的科学意义和工程价值。纳米流控技术具备纳米级孔隙精准制备和原位可视化检测的特点,为页岩油气微观渗流与相态特征的研究提供了全新的实验视角,也为纳米尺度下流体特征的理论研究提供了实验依据。对纳米流控实验技术进行了介绍,并回顾了基于该技术在纳米尺度下油气水的单相及两相流动规律、单组分烃及多组分烃相态特征、扩散与混相过程,以及页岩储层微观物理模型的最新研究进展,重点梳理了页岩储层微观流体特征的纳米流控实验研究方法、实验结果以及与理论研究间的对照情况。同时指出了当前纳米流控技术在研究页岩储层微观流体特征中存在的不足,展望了今后的发展方向。

关键词: 页岩油气藏, 纳米流控芯片, 微观流动机理, 流体相态特征, 微观物理模型

Abstract: Shale reservoirs are characterized by their nanometer pore size. At the nanoscale, fluid flow mechanisms and phase behaviors are significantly influenced by the size and surface effects, resulting in deviations from classical fluid theories. Conventional oil and gas reservoir engineering theory is not fully applicable to shale reservoirs, restricting the efficient development of shale oil and gas. It is thus of both scientific significance and engineering value to clarify fluid transport and phase properties at the nanometer pore scale of shale. Nanofluidics, with the capabilities of precisely manufacturing pore structure and observing in-situ fluid behaviors at the nanoscale, gives new experimental insights into microscopic seepage and phase behavior of shale oil and gas, and provides essential validation for theoretical studies. This paper reviews recent research progress on the nanofluidic study of the nanoscale single- and two-phase flow of oil, gas and water, phase behavior of single- and multi-component hydrocarbons, diffusion and mixing process, as well as microphysical model of shale reservoirs. We focus on introducing nanofluidic methods to detect fluid characteristics, and the differences between experimental results and theoretical descriptions. The current limitations of nanofluidic studies of shale reservoir fluids are discussed in the end, and future directions in this field are foreseen.

Key words: shale reservoir, nanofluidic chip, microscopic flow mechanism, fluid phase characteristics, microphysical model

中图分类号: