[1] 杨进,李磊,宋宇,等.中国海洋油气钻井技术发展现状及展望[J].石油学报,2023,44(12):2308-2318. YANG Jin,LI Lei,SONG Yu,et al.Current status and prospects of offshore oil and gas drilling technology development in China[J].Acta Petrolei Sinica,2023,44(12):2308-2318. [2] 贾承造.中国石油工业上游前景与未来理论技术五大挑战[J].石油学报,2024,45(1):1-14. JIA Chengzao.Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J].Acta Petrolei Sinica,2024,45(1):1-14. [3] 刘岩生,张佳伟,黄洪春.中国深层—超深层钻完井关键技术及发展方向[J].石油学报,2024,45(1):312-324. LIU Yansheng,ZHANG Jiawei,HUANG Hongchun.Key technologies and development direction for deep and ultra-deep drilling and completion in China[J].Acta Petrolei Sinica,2024,45(1): 312-324. [4] 李军,杨宏伟,张辉,等.深水油气钻采井筒压力预测及其控制研究进展[J].中国科学基金,2021,35(6):973-983. LI Jun,YANG Hongwei,ZHANG Hui,et al.Progress of basic research on wellbore pressure control in deepwater oil and gas drilling and production[J].Bulletin of National Natural Science Foundation of China,2021,35(6):973-983. [5] 徐宝昌,尤香凝,孟卓然,等.基于回压激励响应的实时地层压力反演方法[J].石油学报,2024,45(6):1009-1018. XU Baochang,YOU Xiangning,MENG Zhuoran,et al.Real-time formation pressure inversion method based on back-pressure excitation response[J].Acta Petrolei Sinica,2024,45(6):1009-1018. [6] 汪海阁,黄洪春,毕文欣,等.深井超深井油气钻井技术进展与展望[J].天然气工业,2021,41(8):163-177. WANG Haige,HUANG Hongchun,BI Wenxin,et al.Deep and ultra-deep oil/gas well drilling technologies:progress and prospect[J].Natural Gas Industry,2021,41(8):163-177. [7] 夏顺雷,李军,柳贡慧,等.基于无迹卡尔曼滤波的井筒压力实时校正模型[J].石油机械,2022,50(9):10-18. XIA Shunlei,LI Jun,LIU Gonghui,et al.Real-time correction model of wellbore pressure based on unscented Kalman filter[J].China Petroleum Machinery,2022,50(9):10-18. [8] CAO Lihu,SUN Jinsheng,ZHANG Bo,et al.Sensitivity analysis of the temperature profile changing law in the production string of a high-pressure high-temperature gas well considering the coupling relation among the gas flow friction,gas properties,temperature,and pressure[J].Frontiers in Physics,2022,10:1050229. [9] 刘劲歌.深水油气井开采期间环空压力预测及释放机理研究[D].北京:中国石油大学(北京),2019. LIU Jinge.Research on the annular pressure buildup and mitigation mechanism in deepwater wells[D].Beijing:China University of Petroleum,2019. [10] 匡立春,刘合,任义丽,等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发,2021,48(1):1-11. KUANG Lichun,LIU He,REN Yili,et al.Application and development trend of artificial intelligence in petroleum exploration and development[J].Petroleum Exploration & Development,2021,48(1):1-11. [11] 薛亮,戴城,韩江峡,等.油藏渗流物理和数据联合驱动的深度神经网络模型[J].油气地质与采收率,2022,29(1):145-151. XUE Liang,DAI Cheng,HAN Jiangxia,et al.Deep neural network model driven jointly by reservoir seepage physics and data[J].Petroleum Geology and Recovery Efficiency,2022,29(1):145-151. [12] 毕剑飞,李靖,吴克柳,等.数据驱动与物理驱动融合的双驱动渗流代理模型构建[J].油气地质与采收率,2023,30(3):104-114. BI Jianfei,LI Jing,WU Keliu,et al.A data-driven flow surrogate model based on a data-driven and physics-driven method[J].Petroleum Geology and Recovery Efficiency,2023,30(3):104-114. [13] 孙金声,刘凡,程荣超,等.机器学习在防漏堵漏中研究进展与展望[J].石油学报,2022,43(1):91-100. SUN Jinsheng,LIU Fan,CHENG Rongchao,et al.Research progress and prospects of machine learning in lost circulation control[J].Acta Petrolei Sinica,2022,43(1):91-100. [14] RAISSI M,PERDIKARIS P,KARNIADAKIS G E.Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707. [15] 吴国正,王发杰,程隋福,等.基于物理信息神经网络的内部声场正反问题数值计算[J].计算物理,2022,39(6):687-698. WU Guozheng,WANG Fajie,CHENG Suifu,et al.Numerical simulation of forward and inverse problems of internal sound field based on physics-informed neural network[J].Chinese Journal of Computational Physics,2022,39(6):687-698. [16] 汤卓超,傅卓佳.基于物理信息的神经网络求解曲面上对流扩散方程[J].计算力学学报,2023,40(2):216-222. TANG Zhuochao,FU Zhuojia.Physics-informed neural networks for solving convection-diffusion equations on surfaces[J].Chinese Journal of Computational Mechanics,2023,40(2):216-222. [17] 余波,许梦强,高强.基于物理信息神经网络的功能梯度材料稳态/瞬态热传导分析[J].计算力学学报,2023,40(4):594-601. YU Bo,XU Mengqiang,GAO Qiang.Physics-informed neural networks for solving steady/transient heat conduction problems of functionally graded materials[J].Chinese Journal of Computational Mechanics,2023,40(4):594-601. [18] 余波,甘子玉,张森林,等.基于物理信息神经网络预测2D/3D非稳态温度场及热源[J/OL].工程力学,(2023-10-17). https://kns.cnki.net/kcms2/article/abstract?v=DMKM_QUxZ7Dcz 17zI5OICm645rehKIoHRAuXyIUepNleyU_ISLTKdUXz1kDVb Yr2xR15ASx9BMULzQapKpsW7BEYxupyWU0dNw282f8NOlz H8S7vkke2FpGqmAYt2LG6EV5DGUReWWvr411z62Tw-Qo4s-LXlx-jAg7ZaRMiylWfKGMF6fy8-S_t2miAlt0n& uniplatform=NZKPT&language=CHS. YU Bo,GAN Ziyu,ZHANG Senlin,et al.Prediction of 2D/3D unsteady-state temperature fields and heat sources upon the physics-informed neural networks[J/OL]. Engineering Mechanics, (2023-10-17). https://kns.cnki.net/kcms2/article/abstract? v=DMKM_QUxZ7Dcz17zI5OICm645rehKIoHRAuXy IUepNleyU_ISLTKdUXz1kDVbYr2xR15ASx9BMULzQapKps W7BEYxupyW U0dNw282f8NOlzH8S 7vkke2FpGqmA Yt2LG 6EV5DGUReWWvr 411z62Tw-Qo4s-LXlx-jAg 7ZaRMiylWfKGM F6fy8-S_t2miAlt0n& uniplatform=NZKPT&language=CHS. [19] YUAN Taikang,ZHU Junxing,WANG Wuxin,et al.A space-time partial differential equation based physics-guided neural network for sea surface temperature prediction[J].Remote Sensing,2023,15(14):3498. [20] ZHAO Xiaoyu,GONG Zhiqiang,ZHANG Yunyang,et al.Physics-informed convolutional neural networks for temperature field prediction of heat source layout without labeled data[J].Engineering Applications of Artificial Intelligence,2023,117:105516. [21] NAZARI L F,CAMPONOGARA E,IMSLAND L S,et al.Neural networks informed by physics for modeling mass flow rate in a production wellbore[J].Engineering Applications of Artificial Intelligence,2024,128:107528. [22] FRANKLIN T S,SOUZA L S,FONTES R M,et al.A Physics-Informed Neural Networks (PINN)oriented approach to flow metering in oil wells:an ESP lifted oil well system as a case study[J].Digital Chemical Engineering,2022,5:100056. [23] 徐宝昌,张学智,王雅欣,等.用于两相流环空压力预测的自适应物理信息神经网络模型[J].石油学报,2023,44(3):545-555. XU Baochang,ZHANG Xuezhi,WANG Yaxin,et al.Self-adaptive physical information neural network model for prediction of two-phase flow annulus pressure[J].Acta Petrolei Sinica,2023,44(3):545-555. [24] 张学智.钻井过程的动态模拟及解算新方法[D].北京:中国石油大学(北京),2022. ZHANG Xuezhi.Dynamic simulation and new solution method of drilling process[D].Beijing:China University of Petroleum,2022. [25] ALMAJID M M,ABU-ALSAUD M O.Prediction of fluid flow in porous media using physics informed neural networks[C]//Abu Dhabi International Petroleum Exhibition & Conference.Abu Dhabi:ADIPEC,2020. [26] HAN Jiangxia,XUE Liang,WEI Yunsheng,et al.Physics-informed neural network-based petroleum reservoir simulation with sparse data using domain decomposition[J].Petroleum Science,2023,20(6):3450-3460. [27] 刘合,李艳春,贾德利,等.人工智能在注水开发方案精细化调整中的应用现状及展望[J].石油学报,2023,44(9):1574-1586. LIU He,LI Yanchun,JIA Deli,et al.Application status and prospects of artificial intelligence in the refinement of waterflooding development program[J].Acta Petrolei Sinica,2023,44(9):1574-1586. [28] 田十方,李彪.基于梯度优化物理信息神经网络求解复杂非线性问题[J].物理学报,2023,72(10):9-19. TIAN Shifang,LI Biao.Solving complex nonlinear problems based on gradient-optimized physics-informed neural networks[J].Acta Physica Sinica,2023,72(10):9-19. [29] 韦昌,樊昱晨,周永清,等.基于龙格库塔法的多输出物理信息神经网络模型[J].力学学报,2023,55(10):2405-2416. WEI Chang,FAN Yuchen,ZHOU Yongqing,et al.Multi-output physics-informed neural networks model based on the Runge-Kutta method[J].Chinese Journal of Theoretical and Applied Mechanics,2023,55(10):2405-2416. [30] JAGTAP A D,KHARAZMI E,EM KARNIADAKIS G.Conservative physics-informed neural networks on discrete domains for conservation laws:applications to forward and inverse problems[J].Computer Methods in Applied Mechanics and Engineering,2020,365:113028. [31] JAGTAP A D,EM KARNIADAKIS G.Extended physics-informed neural networks (XPINNs):a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J].Communications in Computational Physics,2020,28(5):2001-2041. [32] 李道伦,沈路航,查文舒,等.基于神经算子与类物理信息神经网络智能求解新进展[J].力学学报,2024,56(4):875-889. LI Daolun,SHEN Luhang,ZHA Wenshu,et al.New progress in intelligent solution of neural operators and physics-informed-based methods[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(4):875-889. [33] 刘涛,何淼,张亚,等.小井眼超深井井筒温度预测模型及降温方法研究[J].钻采工艺,2024,47(3):65-72. LIU Tao,HE Miao,ZHANG Ya,et al.Research on wellbore temperature prediction model and cooling method of ultra-deep well with small hole[J].Drilling & Production Technology,2024,47(3):65-72. [34] 李梦博,柳贡慧,李军,等.基于移动边界的钻井井筒动态温度场研究[J].钻采工艺,2015,38(6):11-14. LI Mengbo,LIU Gonghui,LI Jun,et al.Research on dynamic temperature field model of drilling with a moving interface[J].Drilling & Production Technology,2015,38(6):11-14. [35] WIGHT C L,ZHAO Jia.Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks[J].Communications in Computational Physics,2021,29(3):930-954. [36] WANG Sifan,YU Xinling,PERDIKARIS P.When and why PINNs fail to train:a neural tangent kernel perspective[J].Journal of Computational Physics,2022,449:110768. [37] LIU Dehao,WANG Yan.A Dual-Dimer method for training physics-constrained neural networks with minimax architecture[J].Neural Networks,2021,136:112-125. [38] LI Wensheng,ZAHNG Chao,WANG Chuncheng,et al.Revisiting PINNs:generative adversarial physics-informed neural networks and point-weighting method[J].arXiv preprint arXiv,2022,2205:08754. [39] MCCLENNY L,BRAGA-NETO U.Self-adaptive physics-informed neural networks using a soft attention mechanism[J].Journal of Computational Physics,2023,474:111722. [40] WANG Jiangshuai,LI Jun,LIU Gonghui,et al.Development of a wellbore heat transfer model considering circulation loss[J].Arabian Journal of Geosciences,2020,13(2):85. [41] 王志远.含天然气水合物相变的环空多相流流型转化机制研究[D].青岛:中国石油大学(华东),2009. WANG Zhiyuan.Study on annular multiphase flow pattern transition mechanism considering gas hydrate phase transition[D].Qingdao:China University of Petroleum(East China),2009. |