石油学报 ›› 2025, Vol. 46 ›› Issue (2): 413-425.DOI: 10.7623/syxb202502009

• 石油工程 • 上一篇    下一篇

物理信息神经网络驱动的井筒温度场求解方法

刘雪琪1, 王志远1, 魏强2, 王敏3, 孙小辉4, 王雪瑞4, 张剑波1, 尹邦堂1, 孙宝江1   

  1. 1. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    2. 中国石油塔里木油田公司轮南采油气管理区 新疆库尔勒 841000;
    3. 中国石油塔里木油田公司克拉采油气管理区 新疆库尔勒 841000;
    4. 中国石油大学(华东)计算机科学与技术学院 山东青岛 266580
  • 收稿日期:2024-04-09 修回日期:2024-10-24 出版日期:2025-03-13 发布日期:2025-03-13
  • 通讯作者: 王志远,男,1981年12月生,2009年获中国石油大学(华东)油气井工程专业博士学位,现为中国石油大学(华东)教授、博士生导师,主要从事油气井多相流动理论及应用等方面的研究工作。Email:wangzy1209@126.com
  • 作者简介:刘雪琪,男,1998年11月生,2021年获中国石油大学(华东)海洋油气工程专业学士学位,现为中国石油大学(华东)石油与天然气工程专业博士研究生,主要从事油气井多相流动理论及应用、井筒传热、天然气水合物开采等方面的研究。Email:lxq6snow7@163.com
  • 基金资助:
    国家自然科学基金重点项目"超深气井生产管柱泄漏精准识别与压力管控"(No.52434002)、国家自然科学基金基础科学中心项目"超深特深层油气钻采流动调控"(No.52288101)、国家重点研发计划项目"压井处置智能决策支持与控制系统"(2023YFC3009204)、国家自然科学基金联合基金项目"深水控压钻完井地层-井筒多场耦合机理与压力调控"(No.U21B2069)和山东省重大科技创新工程项目"深水复杂钻井多相流动模拟关键技术与监测装备"(2022CXGC020407)资助。

A method for solving wellbore temperature field driven by physical information neural network

Liu Xueqi1, Wang Zhiyuan1, Wei Qiang2, Wang Min3, Sun Xiaohui4, Wang Xuerui4, Zhang Jianbo1, Yin Bangtang1, Sun Baojiang1   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    2. Lunnan Oil and Gas Production Management Area, PetroChina Tarim Oilfield Company, Xinjiang Korla 841000, China;
    3. Kela Oil and Gas Production Management Area, PetroChina Tarim Oilfield Company, Xinjiang Korla 841000, China;
    4. College of Computer Science and Technology, China University of Petroleum, Shandong Qingdao 266580, China
  • Received:2024-04-09 Revised:2024-10-24 Online:2025-03-13 Published:2025-03-13

摘要: 深水、深层油气钻探过程中对井筒温度场计算的实时性要求高,高精度、高效率的井筒温度场求解方法是精确计算流体物性、精细保障井筒流动安全的关键。将井筒温度场模型以损失函数形式嵌入神经网络,利用自适应权重和自适应学习率的优化方法提高训练效率, 建立了物理信息神经网络驱动的井筒温度场求解方法,分析了钻井和气井测试期间井筒温度的瞬态变化。研究结果表明:钻井期间,与有限差分算法相比,钻杆温度和环空温度的平均误差分别为0.847 % 和0.725 % ,井底温度和井口温度的平均误差分别为0.162 % 和1.047 % ,计算效率提高约150倍;与现场实测数据对比,物理信息神经网络驱动的预测解与有限差分数值解的平均误差分别为2.16 % 和2.27 % ,规避偏微分方程的截断误差有助于提高模型精度;气井测试2 d内,天然气水合物生成风险的推断时间为0.728 1 s,该方法可应用于水合物生成区域的快速预测。提出的求解方法在保证计算精度的同时,可大幅度提高计算速度。

关键词: 钻井, 气井测试, 井筒温度, 物理信息神经网络, 快速预测

Abstract: In the drilling process of deepwater and deep oil and gas, there is a high demand for real-time calculation of the wellbore temperature field. Therefore, a high-precision and high-efficiency wellbore temperature field solution method is the key to accurately calculate fluid properties and precisely guarantee the safety of wellbore flow. In this study, a wellbore temperature field model is embedded into the neural network in the form of loss function, and the optimization method of self-adaptive weight and self-adaptive learning rate is used to improve the training efficiency. Further, the paper establishes a method for solving the wellbore temperature field driven by physical information neural network, and analyzes the transient changes in wellbore temperature during drilling and gas well testing. The results show that during drilling, the average errors of drill pipe temperature and annular temperature are 0.847 % and 0.725 % , respectively, and those of bottom hole temperature and wellhead temperature are 0.162 % and 1.047 % , respectively, from which it can be seen that the computational efficiency is improved by about 150 times when compared with the finite difference algorithm. Compared with the field measurments, the average errors of the predicted solution driven by the physical information neutral network and the finite difference numerical solution are 2.16 % and 2.27 % , respectively, and the model accuracy can be improved by avoiding the truncation errors in partial differential equations. During the gas well testing for two days, the inferred time for the risk of natural gas hydrate formation is 0.728 1 s, and this method can be applied to quickly predict the hydrate formation areas. In conclusion, the proposed solution method can not only ensure the calculation accuracy, but also significantly improve the computational speed.

Key words: drilling, gas well testing, wellbore temperature, physical information neural network, quick prediction

中图分类号: