Acta Petrolei Sinica ›› 2025, Vol. 46 ›› Issue (11): 2141-2173.DOI: 10.7623/syxb202511011

• PETROLEUM ENGINEERING • Previous Articles    

Progress on artificial intelligence methods in oil and gas drilling and production

Sun Baojiang1, Zhou Ziqiang1, Sun Qian2   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    2. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2024-11-18 Revised:2025-09-29 Published:2025-12-04

油气钻采工程中的人工智能方法研究进展

孙宝江1, 周梓强1, 孙骞2   

  1. 1. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    2. 中国地质大学(北京)能源学院 北京 100083
  • 通讯作者: 孙宝江,男,1963年11月生,1999年获北京大学流体力学专业博士学位,现为中国石油大学(华东)教授,主要从事海洋油气工程、多相流动、井控、油气井流体力学与工程应用研究。
  • 作者简介:孙宝江,男,1963年11月生,1999年获北京大学流体力学专业博士学位,现为中国石油大学(华东)教授,主要从事海洋油气工程、多相流动、井控、油气井流体力学与工程应用研究。Email:sunbj1128@vip.126.com
  • 基金资助:
    国家重点研发计划项目(2023YFE0119600)、国家自然科学基金基础科学中心项目(No.52288101)、国家自然科学基金面上项目(No.52374050)和中国石油科技创新基金项目(2021DQ02-1101)资助。

Abstract: The current study mainly focus on the application of intelligent methods to improve the efficiency and reliability of technologies for optimizing parameters and identifying operational states in drilling and production processes, which exhibit great potential for future development. However, in the development of intelligent engineering technologies for oil and gas drilling and production, the smart optimization algorithms and predictive models still face the challenges including poor timeliness, weak robustness, and limited reliability. This hinder the practical application of artificial intelligence (AI)methods in oil and gas engineering. The paper provides an overview of the development status of AI methods and intelligent technologies for oil and gas drilling and production in China and abroad, involving engineering design and parameter optimization for well drilling and completion, evaluation of hydraulic fracturing performance and optimization of process parameters, diagnosis of artificial lift system failures, and prediction of reservoir properties and productivity. It further summarizes and analyzes the major challenges including a heavy reliance on labeled data for model training, poor model interpretability and weak performance in small-sample learning, inadquate validation of engineering applicability and reliability, poor timeliness of AI methods in performing optimization tasks, and limited flexibility in multi-objective optimization decision-making methods. Based on aforementioned challenges and the current research state of drilling and production technologies in China’s petroleum industry, this paper proposes several suggestions for the development of AI methods in oil and gas drilling and production as below:(1)establishing standardized, shared industry databases to support intelligent model comparison and validation; (2)enhancing research on learning paradigms to reduce the dependency on labelled data; (3)strengthening research on intelligent optimization methods to improve decision-making efficiency and timeliness; (4)focusing on studying physics-contrained data-driven models to improve the reliability of hybrid physics-data driven models; (5)advancing research on sample balancing and augmentation techniques to improve minority class recognition and model stability; (6)making efferts to develop multimodal data fusion and processing methods to boost the prediction accuracy and engineering robustness of intelligent models; (7)leveraging the advantages of general and industry-specific large models to enhance interpretability and accuracy of intelligent optimization decision-making for drill and production operations under multiple scenarios.

Key words: artificial intelligence, intelligent drilling and production, machine learning, intelligent optimization algorithms, application scenarios, development suggestions

摘要: 引入智能方法解决钻采过程中参数优化、状态识别等技术中的效率和可靠性等问题是目前的研究热点,并展现了广阔的发展前景。但在油气钻采智能化工程技术的研发过程中,智能优化算法和预测模型尚存在时效性和鲁棒性差、可靠性不足等问题,导致人工智能方法在油气钻采工程中的应用尚不理想。对国内外油气钻采领域内钻完井工程设计与施工参数优化、水力压裂改造效果评价与工艺参数优化、人工举升井故障诊断、油气藏物性和产能预测等方面的人工智能方法及智能化技术的发展现状进行了概述,并对人工智能模型的训练过程对标签数据依赖严重、可解释性不足以及小样本学习能力欠佳、工程适用性与可靠性验证不足,以及智能方法解决优化问题时效性差、多目标优化决策方法灵活性不足等主要问题进行了归纳分析。结合中国石油工业钻采技术研究现状及上述问题提出了油气钻采工程中人工智能方法发展建议:①建立标准化行业共享数据库体系,解决智能模型对比与验证难题;②加强学习范式研究,缓解标签数据依赖问题;③加强智能优化方法研究,提高决策精准性与时效性;④强化物理约束的数据驱动模型研究,增强物理—数据双驱动模型的可靠性;⑤推进样本均衡与增强技术研究,提升少数类识别准确性与模型稳定性;⑥加强多模态数据融合与处理方法研究,提升智能模型预测精度与工程鲁棒性;⑦发挥通用及行业大模型优势,提高油气钻采多场景智能优化决策可解释性与准确性。

关键词: 人工智能, 智能钻采, 机器学习, 智能优化算法, 应用场景, 发展建议

CLC Number: