Acta Petrolei Sinica ›› 2025, Vol. 46 ›› Issue (11): 2141-2173.DOI: 10.7623/syxb202511011
• PETROLEUM ENGINEERING • Previous Articles
Sun Baojiang1, Zhou Ziqiang1, Sun Qian2
Received:2024-11-18
Revised:2025-09-29
Published:2025-12-04
孙宝江1, 周梓强1, 孙骞2
通讯作者:
孙宝江,男,1963年11月生,1999年获北京大学流体力学专业博士学位,现为中国石油大学(华东)教授,主要从事海洋油气工程、多相流动、井控、油气井流体力学与工程应用研究。
作者简介:孙宝江,男,1963年11月生,1999年获北京大学流体力学专业博士学位,现为中国石油大学(华东)教授,主要从事海洋油气工程、多相流动、井控、油气井流体力学与工程应用研究。Email:sunbj1128@vip.126.com
基金资助:CLC Number:
Sun Baojiang, Zhou Ziqiang, Sun Qian. Progress on artificial intelligence methods in oil and gas drilling and production[J]. Acta Petrolei Sinica, 2025, 46(11): 2141-2173.
孙宝江, 周梓强, 孙骞. 油气钻采工程中的人工智能方法研究进展[J]. 石油学报, 2025, 46(11): 2141-2173.
Add to citation manager EndNote|Ris|BibTeX
| [1] 李阳,廉培庆,薛兆杰,等. 大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报(自然科学版),2020,44(4):1-11. LI Yang,LIAN Peiqing,XUE Zhaojie,et al.Application status and prospect of big data and artificial intelligence in oil and gas field development[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(4):1-11. [2] 国家能源局.国家能源局关于加快推进能源数字化智能化发展的若干意见[EB/OL].(2023-03-28)[2024-10-20].https://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122. htm.National Energy Administration.Several opinions on accelerating the development of energy digitalization and intelligence[EB/OL].(2023-03-28)[2024-10-20].https://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122. htm. [3] 苏义脑,路保平,刘岩生,等.中国陆上深井超深井钻完井技术现状及攻关建议[J].石油钻采工艺,2020,42(5):527-542. SU Yi’nao,LU Baoping,LIU Yansheng,et al.Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J].Oil Drilling & Production Technology,2020,42(5):527-542. [4] 中国石油新闻中心.七百亿参数昆仑大模型建设成果发布会在京举办[EB/OL].(2024-11-29)[2025-04-12].https://news.cnpc.com.cn/system/2024/11/29/030148895. shtml?utm_source= chatgpt.com.China Petroleum News Center.Press conference on the achievements of the 70-billion-parameter Kunlun large model held in Beijing[EB/OL].(2024-11-29)[2025-04-12].https://news.cnpc.com.cn/system/ 2024/11/29/030148895. shtml?utm_source= chatgpt.com. [5] 中国石化新闻网.以AI赋能石化发展[EB/OL].(2025-02-21)[2025-04-12].http://www.sinopecnews.com.cn/zhuanti/content/2025-02/21/content_7119453. html.Sinopec News Network.Empowering petrochemical development with AI[EB/OL].(2025-02-21)[2025-04-12].Available at:http://www.sinopecnews.com.cn/zhuanti/content/2025-02/21/content_7119453. html. [6] 人民网.中国海油发布"海能"人工智能模型[N/OL].人民日报海外版,2024-10-16(03)[2025-04-12].https://paper.people.com.cn/rmrbhwb/html/2024-10/16/content_26085749. htm.People’s Daily Online.CNOOC releases "Haineng" artificial intelligence model[N/OL].People’s Daily Overseas Edition,2024-10-16(03)[2025-04-12].https://paper.people.com.cn/rmrbhwb/html/2024-10/16/content_26085749. htm. [7] 匡立春,刘合,任义丽,等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发,2021,48(1):1-11. KUANG Lichun,LIU He,REN Yili,et al.Application and development trend of artificial intelligence in petroleum exploration and development[J].Petroleum Exploration and Development,2021,48(1):1-11. [8] 汪海阁,乔磊,杨雄,等.中石油页岩油气工程技术现状及发展建议[J].石油学报,2024,45(10):1552-1564. WANG Haige,QIAO Lei,YANG Xiong,et al.Current status and development recommendations for CNPC’s shale oil and gas engineering technology[J].Acta Petrolei Sinica,2024,45(10):1552-1564. [9] 徐凤银,熊先钺,侯伟,等.深部煤层气产业升级与"八个一体化"体系的建立[J].石油学报,2025,46(2):289-305. XU Fengyin,XIONG Xianyue,HOU Wei,et al.Upgrading of deep coalbed methane industry and establishment of the "Eight-in-One" system[J].Acta Petrolei Sinica,2025,46(2):289-305. [10] ERTEKIN T,SUN Qian.Artificial intelligence applications in reservoir engineering:a status check[J].Energies,2019,12(15):2897. [11] GAO Jiajia ,YANG Weidong ,CHEN Fuzhi,et al.Pore pressure prediction using machine learning methods and logging data considering Gaussian mixture clustering model[J].Geoenergy Science and Engineering,2026,257:214188-214188. [12] 冯义,朱亮,杨立军,等.基于LSTM神经网络深度序列机械钻速实时预测[J].西安石油大学学报(自然科学版),2024,39(1): 122-128. FENG Yi,ZHU Liang,YANG Lijun,et al.Real-time prediction of ROP based on LSTM neural network deep sequence[J].Journal of Xi’an Shiyou University(Natural Science Edition),2024,39(1):122-128. [13] ZHANG Chengkai,SONG Xianzhi,LIU Zihao,et al.Real-time and multi-objective optimization of rate-of-penetration using machine learning methods[J].Geoenergy Science and Engineering,2023,223:211568. [14] 李臻,宋先知,李根生,等.基于双输入序列到序列模型的井眼轨迹实时智能预测方法[J].石油钻采工艺,2023,45(4):393-403. LI Zhen,SONG Xianzhi,LI Gensheng,et al.Real-time intelligent prediction of well trajectory based on dual-input sequence-to-sequence model[J].Oil Drilling & Production Technology,2023,45(4):393-403. [15] 李辉,满曰南,李红星,等.基于相对熵改进模糊C均值聚类的溢流预警研究[J].钻采工艺,2023,46(3):165-170. LI Hui,MAN Yuenan,LI Hongxing,et al.Research on kick warning based on relative entropy improved fuzzy C-mean clustering[J].Drilling & Production Technology,2023,46(3):165-170. [16] 蔡晖,石洪福,王昭,等.基于机器学习的疏松砂岩油藏定向井初期产能预测与影响因素分析[J].中国海上油气,2025,37(3):123-131. CAI Hui,SHI Hongfu,WANG Zhao,et al.Initial productivity prediction and influencing factor analysis of directional wells in unconsolidated sandstone reservoirs based on machine learning[J].China Offshore Oil and Gas,2025,37(3):123-131. [17] XU Xijie,RUI Xiaoping,FAN Yonglei,et al.A multivariate long short-term memory neural network for coalbed methane production forecasting[J].Symmetry,2020,12(12):2045. [18] SUN Qian,ERTEKIN T.Screening and optimization of polymer flooding projects using artificial-neural-network (ANN)based proxies[J].Journal of Petroleum Science and Engineering,2020,185:106617. [19] 刘合,李艳春,贾德利,等.人工智能在注水开发方案精细化调整中的应用现状及展望[J].石油学报,2023,44(9):1574-1586. LIU He,LI Yanchun,JIA Deli,et al.Application status and prospects of artificial intelligence in the refinement of waterflooding development program[J].Acta Petrolei Sinica,2023,44(9):1574-1586. [20] ZHANG Kai,YU Haiqun,MA Xiaopeng,et al.Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies[J].Petroleum Science,2022,19(2):707-719. [21] 谭茂金,武宏亮,王思宇,等.中国海相页岩气测井评价技术进展与发展方向[J].石油学报,2024,45(1):241-260. TAN Maojin,WU Hongliang,WANG Siyu,et al.Progress and development direction of log interpretation technology for marine shale gas in China[J].Acta Petrolei Sinica,2024,45(1):241-260. [22] 刘义,胡修权,李娜,等.机器学习在非常规油气藏岩相研究中的应用进展综述[J/OL].中国地质,(2025-05-20).http://kns.cnki.net/kcms/detail/11.1167. P.20250519.1754.004. html.LIU Yi,HU Xiuquan,LI Na,et al.A review on the application of machine learning in the study of lithofacies of unconventional oil and gas reservoirs[J/OL].Geology in China,(2025-05-20).http://kns.cnki.net/kcms/detail/11.1167. P.20250519.1754.004. html. [23] REN Quan,ZHANG Hongbing,ZHANG Dailu,et al.A novel hybrid method of lithology identification based on k-means++ algorithm and fuzzy decision tree[J].Journal of Petroleum Science and Engineering,2022,208:109681. [24] LIN Jing,LI Hui,LIU Naihao,et al.Automatic lithology identification by applying LSTM to logging data:a case study in X tight rock reservoirs[J].IEEE Geoscience and Remote Sensing Letters,2021,18(8):1361-1365. [25] DUAN Yajun,XIE Jun,SU Yanchun,et al.Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan sag as an example[J].Scientific Reports,2020,10(1):19209. [26] SUN Jian,LI Qi,CHEN Mingqiang,et al.Optimization of models for a rapid identification of lithology while drilling:a win-win strategy based on machine learning[J].Journal of Petroleum Science and Engineering,2019,176:321-341. [27] REN Quan,ZHANG Hongbing,ZHANG Dailu,et al.Lithology identification using principal component analysis and particle swarm optimization fuzzy decision tree[J].Journal of Petroleum Science and Engineering,2023,220:111233. [28] QAEDI K,BARKER S M,SIMANJUNTAK A,et al.Automated machine learning for lithology prediction derived from seismic data[R].OTC 34778,2024. [29] MAHMOUD A A,ELKATATNY S,AL-ABDULJABBAR A.Application of machine learning models for real-time prediction of the formation lithology and tops from the drilling parameters[J].Journal of Petroleum Science and Engineering,2021,203:108574. [30] ZIADAT W,GAMAL H,ELKATATNY S.Real-time machine learning application for Formation tops and lithology prediction[R].OTC 32447,2023. [31] ZHANG Jiafeng,LIU Ye,MA Yuheng,et al.Real-time lithology identification from drilling data with self & cross attention model and wavelet transform[J].Geoenergy Science and Engineering,2025,244:213427. [32] MENSAH A O.Real-time lithology prediction while drilling using machine learning algorithms:a web application based solution[R]. SPE 217479,2023. [33] YAN Tie,XU Rui,SUN Shihui,et al.A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm[J].Petroleum Science,2024,21(2):1135-1148. [34] DENG Song,PAN Haoyu,LI Chaowei,et al.A real-time lithological identification method based on SMOTE-Tomek and ICSA optimization[J].Acta Geologica Sinica(English Edition),2024,98(2):518-530. [35] QIAN Haiyu,GENG Yanfeng,WANG Hongyu.Lithology identification based on ramified structure model using generative adversarial network for imbalanced data[J].Geoenergy Science and Engineering,2024,240:213036. [36] DING Yan,CUI Yi,XIN Qingqing,et al.Automated identification of lithology from drilling cuttings based on deep residual network[R].SPE 214565,2023. [37] TOLSTAYA E,SHAKIROV A,MEZGHANI M.Lithology prediction from drill cutting images using convolutional neural networks and automated dataset cleaning[R].SPE 216418,2023. [38] 李根生,宋先知,祝兆鹏,等.智能钻完井技术研究进展与前景展望[J].石油钻探技术,2023,51(4):35-47. LI Gensheng,SONG Xianzhi,ZHU Zhaopeng,et al.Research progress and the prospect of intelligent drilling and completion technologies[J].Petroleum Drilling Techniques,2023,51(4):35-47. [39] LI Zhen,SONG Xianzhi,WANG Zheng,et al.Real-time prediction of wellbore trajectory with a dual-input GRU (Di-GRU)model[R].OTC 34894,2024. [40] GAO Yi,WANG Na,MA Yihao.L2-SSA-LSTM prediction model of steering drilling wellbore trajectory[J].IEEE Access,2024,12: 450-461. [41] GAO Yi,WANG Na,LI Fei.Steering drilling wellbore trajectory prediction based on the NOA-LSTM-FCNN method[J].Scientific Reports,2025,15(1):5215. [42] WANG Hongyu,GENG Yanfeng,WANG Weiliang,et al.Build-up rate prediction using data augmentation with VAE-based feature extraction[J].Energy,2025,330:136716. [43] LI Zhen,SONG Xianzhi,YU Qitao,et al.Integrating mechanics and machine learning for build-up rate prediction[J].Geoenergy Science and Engineering,2025,246:213594. [44] CHEN Dong,MAO Kaifeng,YE Zhihui,et al.An artificial intelligent well trajectory design method combining both geological and engineering objectives[J].Geoenergy Science and Engineering,2024,236:212736. [45] WANG Zhaojun,SHEN Shuilong,CHEN Dong,et al.Multi-objective optimization of the wellbore trajectory considering both geological and engineering factors[J].Geoenergy Science and Engineering,2025,246:213647. [46] CHEN Bihai,WEN Guojun,HE Xin,et al.Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design[J].Geoenergy Science and Engineering,2023,222:211431. [47] XU Jiafeng,CHEN Xin,CAO Weihua,et al.Multi-objective trajectory planning in the multiple strata drilling process:a bi-directional constrained co-evolutionary optimizer with Pareto front learning[J].Expert Systems with Applications,2024,238:122119. [48] XU Jiafeng,CHEN Xin,ZHOU Yang,et al.Expensive deviation-correction drilling trajectory planning:a constrained multi-objective Bayesian optimization with feasibility-oriented bi-objective acquisition function[J].Control Engineering Practice,2025,156:106240. [49] SUN Shihui,GAO Yanwen,SUN Xiaofeng,et al.Intelligent optimization of horizontal wellbore trajectory based on reinforcement learning[J].Geoenergy Science and Engineering,2025,244:213479. [50] VISHNUMOLAKALA N,KESIREDDY V,DEY S,et al.Optimizing well trajectory navigation and advanced Geo-Steering using deep-reinforcement learning[R].SPE 215011,2023. [51] MUHAMMAD R B,CHERAGHI Y,ALYAEV S,et al.Geosteering robot powered by multiple probabilistic interpretation and artificial intelligence:benchmarking against human experts[J].SPE Journal,2025,30(3):995-1009. [52] AL-MUDHAF M N,AL-HERZ A,HAFIZ H A,et al.Revolutionizing drilling efficiency with Neuro Autonomous Solutions:DrillOps automate,DD advisor,and AutoCurve coupled with SLB well construction rig & blue BHA[R].SPE 216690,2023. [53] Schlumberger.SLB adds AI-driven geosteering to its autonomous drilling solutions to achieve more efficient and productive wells[EB/OL].(2024-12-09)[2025-04-12].https://www.slb.com/news-and-insights/newsroom/press-release/2024/slb-adds-ai-geosteering. [54] UMEONAKU L,ALUU B,OKAFOR K,et al.A sustainable pathway to achieving operational efficiency while reducing carbon emissions using remote operations and drilling automation[R].SPE 217134,2023. [55] HALLIBURTON.LOGIX®:precision drilling through intelligent automation[EB/OL].(2024-09-18)[2025-04-12].https://www.halliburton.com/en/about-us/press-release/logix-precision-drilling-through-intelligent-automation. [56] FARHI N,ABDEL SAMIE M A,ELDEMERDASH M M,et al.A smarter way to drill:first autonomous directional drilling run in Kuwait Delivers 8.5" landing section in record time-case study from North Kuwait[R].SPE 211742,2022. [57] FARHI N,MARCK J C,SANYAL A,et al.Remote drilling solution delivers consistency with the use of an automated drilling director:case studies from Kuwait[R].SPE 207866,2021. [58] VAN OORT E,TAYLOR E,THONHAUSER G,et al.Real-time rig-activity detection helps identify and minimize invisible lost time[J].World Oil,2008,229(4):39-47. [59] 张菲菲,崔亚辉,于琛,等.基于机器学习的钻井工况识别技术现状及发展[J].长江大学学报(自然科学版),2023,20(4):53-65. ZHANG Feifei,CUI Yahui,YU Chen,et al.Recent developments and future trends of drilling status recognition technology based on machine learning[J].Journal of Yangtze University(Natural Science Edition),2023,20(4):53-65. [60] 胡志强,杨进,王磊,等.钻井工况智能识别与时效分析技术[J].石油钻采工艺,2022,44(2):241-246. HU Zhiqiang,YANG Jin,WANG Lei,et al.Intelligent identification and time-efficiency analysis of drilling operation conditions[J].Oil Drilling & Production Technology,2022,44(2):241-246. [61] 毛光黔,宋先知,丁燕,等.基于梯度提升决策树算法的钻井工况识别方法[J].石油钻采工艺,2023,45(5):532-539. MAO Guangqian,SONG Xianzhi,DING Yan,et al.Drilling condition identification method based on gradient boosting decision tree[J].Oil Drilling & Production Technology,2023,45(5):532-539. [62] QIAO Ying,LUO Yihan,SHANG Xu,et al.An efficient drilling conditions classification method utilizing encoder and improved Graph Attention Networks[J].Geoenergy Science and Engineering,2024,233:212578. [63] LIU Zihao,SONG Xianzhi,YE Shanlin,et al.Intelligent identification workflow of drilling conditions combining deep learning and drilling knowledge[C]//Proceedings of the 43rd International Conference on Ocean,Offshore and Arctic Engineering.Singapore:ASME,2024. [64] 王正,宋先知,李洪松,等.基于1dCNN-BiGRU和注意力机制的钻井工况智能识别方法[J].石油科学通报,2025,10(5):926-940. WANG Zheng,SONG Xianzhi,LI Hongsong,et al.Intelligent recognition method for drilling conditions based on 1dCNN-BiGRU and attention mechanism[J].Petroleum Science Bulletin,2025,10(5):926-940. [65] CHATAR C,SURESHA S,SHAO L,et al.Determining rig state from computer vision analytics[R].SPE 204086,2021. [66] 殷启帅,杨进,曹博涵,等.基于长短期记忆神经网络的深水钻井工况实时智能判别模型[J].石油钻采工艺,2022,44(1):97-104. YIN Qishuai,YANG Jin,CAO Bohan,et al. Real-time intelligent rig activities classification model of deep-water drilling using Long Short-Term Memory(LSTM) network[J].Oil Drilling & Production Technology,2022,44(1):97-104. [67] 中海石油(中国)有限公司,中海石油(中国)有限公司天津分公司.一种基于钻井多工况的钻井异常状态智能识别方法:202410805982.5[P].2024-09-06. CNOOC Limited,CNOOC(China) Tianjin Branch.Well drilling abnormal state intelligent identification method based on multiple working conditions of well drilling:202410805982.5[P].2024-09-06. [68] QIAO Ying,XU Hongmin,ZHOU Wenjun,et al.A BiGRU joint optimized attention network for recognition of drilling conditions[J].Petroleum Science,2023,20(6):3624-3637. [69] 杨传书,王敏生,李昌盛,等.中国石化钻井工程决策支持系统进展及展望[J].钻采工艺,2025,48(1):55-62. YANG Chuanshu,WANG Minsheng,LI Changsheng,et al.Progress and prospects of drilling engineering decision support system in Sinopec[J].Drilling & Production Technology,2025,48(1):55-62. [70] 高健,汪海阁,宋世贵,等.中国石油工程作业智能支持中心模式改革与初探[J].钻采工艺,2025,48(1):37-45. GAO Jian,WANG Haige,SONG Shigui,et al.Reform and preliminary study on the mode of CNPC engineering intelligent support center[J]. Drilling & Production Technology,2025,48(1):37-45. [71] CURINA F,ABDO E,ROUHI A,et al.Rig state identification and equipment optimization using machine learning models[R].OMC 2021-063,2021. [72] KRIKOR A,KHAMBETE S P,BIMASTIANTO P A,et al.Machine learning delivers automated feedback on real time key performance indicators during drilling operations[R].SPE 211753,2022. [73] 沐华艳,孙金声,丁燕,等.基于机械比能的钻速预测模型优选[J].钻采工艺,2023,46(3):16-21. MU Huayan,SUN Jinsheng,DING Yan,et al.Optimization of ROP-increase prediction model based on mechanical specific energy theory[J].Drilling & Production Technology,2023,46(3):16-21. [74] 刘伟吉,张家辉,祝效华.多目标优化算法在机械比能与机械钻速耦合优化中的应用[J].石油钻采工艺,2025,47(03):265-276. LIU Weiji,ZHANG Jiahui,ZHU Xiaohua.Application of multi-objective optimization algorithm in coupling optimization of mechanical specificenergy and rate of penetration[J].Oil Drilling & Production Technology,2025,47(3):265-276. [75] ALSAIHATI A,ISMAIL M,ELKATATNY S.Optimization of drilling parameters while drilling surface holes using machine learning and differential evolution[J].SPE Journal,2025,30(2):591-604. [76] CHEN Xuyue,DU Xu,WENG Chengkai,et al.A real-time drilling parameters optimization method for offshore large-scale cluster extended reach drilling based on intelligent optimization algorithm and machine learning[J].Ocean Engineering,2024,291:116375. [77] WU Xiao,LAI Xuzhi,HU Jie,et al.Improvement of rate of penetration in drilling process based on TCN-Vibration recognition[J].IEEE Transactions on Instrumentation and Measurement,2024,73:2524912. [78] HAI weiguo,HE Yingming,LI Yafeng,et al.Multi-element drilling parameter optimization based on drillstring dynamics and ROP model[J].Geoenergy Science and Engineering,2025,244:213460. [79] HAO Jiasheng,XU Haomin,PENG Zhinan,et al.An online adaptive ROP prediction model using GBDT and Bayesian optimization algorithm in drilling[J].Geoenergy Science and Engineering,2025,246:213596. [80] HEGDE C,DAIGLE H,MILLWATER H,et al.Analysis of rate of penetration (ROP)prediction in drilling using physics-based and data-driven models[J].Journal of Petroleum Science and Engineering,2017,159:295-306. [81] 祝兆鹏,朱林,宋先知,等.机理约束下钻井机械钻速智能预测泛化方法[J].天然气工业,2024,44(9):179-189. ZHU Zhaopeng,ZHU Lin,SONG Xianzhi,et al.A generalization method of intelligent ROP prediction under mechanism constraints[J].Natural Gas Industry,2024,44(9):179-189. [82] 郑双进,江厚顺,熊梦园,等.基于数据驱动和机理模型的机械钻速预测[J].钻采工艺,2025,48(1):78-87. ZHENG Shuangjin,JIANG Houshun,XIONG Mengyuan,et al.Data driven and mechanistic model based prediction of rate of penetration[J].Drilling & Production Technology,2025,48(1):78-87. [83] 李博志,杨明合,许楷,等.基于注意力机制的卷积神经网络机械钻速预测方法[J].科学技术与工程,2024,24(21):8910-8916. LI Bozhi,YANG Minghe,XU Kai,et al.Prediction method for ROP based on attention mechanism of convolutional neural network[J].Science Technology and Engineering,2024,24(21):8910-8916. [84] MENG Han,LIN Botao,JIN Yan.Stop using black-box models:application of explainable artificial intelligence for rate of penetration prediction[J].SPE Journal,2024,29(12):6640-6654. [85] 彭炽,任书江,杨赟.基于子网络架构的页岩气水平井机械钻速预测[J].钻采工艺,2025,48(1):113-120. PENG Chi,REN Shujiang,YANG Yun.The prediction of rate of penetration in shale gas horizontal wells based on subnetwork architecture[J].Drilling & Production Technology,2025,48(1):113-120. [86] YUAN Qingrui,HE Miao,CHEN Zhichao,et al.A real-time prediction method for rate of penetration sequence in offshore deep wells drilling based on attention mechanism-enhanced BiLSTM model[J].Ocean Engineering,2025,325:120820. [87] 郭家,刘烨,韩雪银,等.机器学习预测机械钻速及在工程上的应用[J].海洋石油,2024,44(1):92-95. GUO Jia,LIU Ye,HAN Xueyin,et al.Prediction of ROP by machine learning and its application in engineering[J].Offshore Oil,2024,44(1):92-95. [88] YIN Hu,ZHAO Xiuwen,LI Qian.Research on adaptive prediction model of rate of penetration under dynamic formation conditions[J].Engineering Applications of Artificial Intelligence,2024,133:108281. [89] JUNIOR J R B,LAVI B.Enhancing rate of penetration prediction in drilling operations:a data stream framework approach[J].Engineering Applications of Artificial Intelligence,2025,143:110034. [90] MA Zhengchao,WENG Jintao,ZHANG Junkai,et al.Intelligent prediction of rate of penetration through meta-learning and data augmentation synergy under limited sample[J].Geoenergy Science and Engineering,2025,250:213818. [91] PAYETTE G S,SPIVEY B J,WANG L,et al.A real-time well-site based surveillance and optimization platform for drilling:technology,basic workflows and field results[R].SPE 184615,2017. [92] DELAVAR M R,RAMEZANZADEH A,GHOLAMI R,et al.Optimization of drilling parameters using combined multi-objective method and presenting a practical factor[J].Computers & Geosciences,2023,175:105359. [93] YAVARI H,FAZAELIZADEH M,AADNOY B S,et al.An approach for optimization of controllable drilling parameters for motorized bottom hole assembly in a specific Formation[J].Results in Engineering,2023,20:101548. [94] WU Xiao,LAI Xuzhi,HU Jie,et al.Efficiency-safety coordination optimization in drilling process under complex Formations[J].Neurocomputing,2025,630:129732. [95] SAADELDIN R,GAMAL H,ELKATATNY S.Machine learning solution for predicting vibrations while drilling the curve section[J].ACS Omega,2023,8(39):35822-35836. [96] 刘慕臣,宋先知,李大钰,等.钻柱摩阻扭矩智能预测模型与解释[J].煤田地质与勘探,2023,51(9):89-99. LIU Muchen,SONG Xianzhi,LI Dayu,et al.An intelligent prediction method and interpretability for drag and torque of drill string[J].Coal Geology & Exploration,2023,51(9):89-99. [97] 汪海阁,高博,郑有成,等.机器学习在钻柱振动识别与预测中的研究进展[J].天然气工业,2024,44(1):149-158. WANG Haige,GAO Bo,ZHENG Youcheng,et al.Research progress of machine learning in drill string vibration recognition and prediction[J].Natural Gas Industry,2024,44(1):149-158. [98] WEATHERFORD.Centro® well construction optimization platform[EB/OL].[2025-04-12].https://www.weatherford.com/products-and-services/drilling-and-evaluation/drilling-services/centro-well-construction-optimization-platform/. [99] CAO Jie,NABAVI J,OEDEGAARD S I.Drilling advisory automation with digital twin and AI technologies[R].SPE 217960,2024. [100] Baker Hughes.i-Trak drilling automation services maximize ROP and save 22 hours in challenging hole section[EB/OL].[2025-04-12].https://www.bakerhughes.com/case-study/itrak-drilling-automation-services-maximize-rop-and-save-22-hours-challenging-h olehttps://www.nov.com/products/kaizen-intelligent-drilling-optimizer. [101] EXEBENUS.Exebenus spotter ROP agent[EB/OL].[2025-04-12].https://exebenus.com/exebenus-spotter/rop-agent/. [102] EXEBENUS.ROP Agent reduces drilling time in offshore development side-track well[EB/OL].[2025-04-12].https://exebenus.com/2022/02/01/rop-agent-reduces-drilling-time-in-offshore-development-side-track-well/. [103] NOV.IDO intelligent drilling optimizer kaizen case study[EB/OL].[2025-04-12].https://www.nov.com/-/media/nov/files/products/wbt/md-totco/kaizen-intelligent-drilling-optimizer/kaizen-intelligent-drilling-optimizer-included-in-program-that-set-record-for-fastest-well-drilled-i.pdf. [104] NOV.IDO | intelligent drilling optimizer | kaizen[EB/OL].[2025-04-12].https://www.nov.com/products/kaizen-intelligent-drilling-optimizer. [105] MGIMBA M M,JIANG Shu,NYAKILLA E E,et al.Application of GMDH to predict pore pressure from well logs data:a case study from southeast Sichuan Basin,China[J].Natural Resources Research,2023,32(4):1711-1731. [106] JAFARIZADEH F,RAJABI M,TABASI S,et al.Data driven models to predict pore pressure using drilling and petrophysical data[J].Energy Reports,2022,8:6551-6562. [107] RADWAN A E,WOOD D A,RADWAN A A.Machine learning and data-driven prediction of pore pressure from geophysical logs:a case study for the Mangahewa gas field,New Zealand[J].Journal of Rock Mechanics and Geotechnical Engineering,2022,14(6):1799-1809. [108] YALAMANCHI P,DATTA GUPTA S,UPADHYAY R.Evaluating the effectiveness of ensemble machine learning approaches for pore pressure prediction using petrophysical log data in carbonate reservoir[J].Acta Geophysica,2025,73(3):2591-2619. [109] DAS G,MAITI S.Ensemble learning-based interpretable method for pore pressure prediction using multivariate well logging data of IODP site U1517[J].Earth Science Informatics,2025,18(2):206. [110] KRISHNA S,IRFAN S A,KESHAVARZ S,et al.Smart predictions of petrophysical Formation pore pressure via robust data-driven intelligent models[J].Multiscale and Multidisciplinary Modeling,Experiments and Design,2024,7(6):5611-5630. [111] DENG Song,PAN Haoyu,WANG Haige,et al.A hybrid machine learning optimization algorithm for multivariable pore pressure prediction[J]. Petroleum Science,2024,21(1):535-550. [112] XU Yuqiang,YANG Lei,XU Jiaxing,et al.Prediction method for Formation pore pressure based on transfer learning[J].Geoenergy Science and Engineering,2024,236:212747. [113] CAO Shaohua,WANG Chengqi,NIU Qiang,et al.Enhancing pore pressure prediction accuracy:a knowledge-driven approach with temporal fusion transformer[J].Geoenergy Science and Engineering,2024,238:212839. [114] SHI Fang,LIAO Hualin,QU Fengtao,et al.Collaborative-driven reservoir Formation pressure prediction using GAN-ML models and well logging data[J].Geoenergy Science and Engineering,2024,242:213271. [115] DELAVAR M R,RAMEZANZADEH A.Pore pressure prediction by empirical and machine learning methods using conventional and drilling logs in carbonate rocks[J].Rock Mechanics and Rock Engineering,2023,56(1):535-564. [116] FARSI M,MOHAMADIAN N,GHORBANI H,et al.Predicting Formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms[J].Natural Resources Research,2021,30(5):3455-3481. [117] 宋先知,姚学喆,李根生,等.基于LSTM-BP神经网络的地层孔隙压力计算方法[J].石油科学通报,2022,7(1):12-23. SONG Xianzhi,YAO Xuezhe,LI Gensheng,et al.A novel method to calculate Formation pressure based on the LSTM-BP neural network[J].Petroleum Science Bulletin,2022,7(1):12-23. [118] 许玉强,何保伦,王舒,等.深度学习与Eaton法联合驱动的地层孔隙压力预测方法[J].中国石油大学学报(自然科学版),2023,47(6):50-59. XU Yuqiang,HE Baolun,WANG Yanshu,et al.A novel prediction method of Formation pore pressure driven by deep learning and Eaton method[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(6):50-59. [119] 朱海燕,王智辉,范宇,等.碳酸盐岩地层孔隙压力预测方法研究进展及展望[J].石油学报,2025,46(8):1628-1646. ZHU Haiyan,WANG Zhihui,FAN Yu,et al.Research progress and application prospects of prediction methods for pore pressure in carbonate Formations[J].Acta Petrolei Sinica,2025,46(8):1628-1646. [120] ISEMIN I,NKUNDU K A.Investigating the Use of machine learning models for the prediction of pressure gradient and flow regimes in multiphase flow in horizontal pipes[R].SPE 208410,2021. |
| [1] | Chen Zhiming, Zhu Haifeng, Zhao Hui, Dong Peng, Liao Xinwei, Yu Wei. Efficient and rapid inversion of fracture parameters of fracturing horizontal wells based on feature points and improved CNN [J]. Acta Petrolei Sinica, 2025, 46(9): 1751-1763. |
| [2] | Liu He, Ren Yili, Li Xin, Zhu Rukai, Hu Yanxu, Liu Xi, Su Qianxiao, Wu Jianping, Li Bin. Connotation and prospect of intelligent recognition technology for cores [J]. Acta Petrolei Sinica, 2024, 45(8): 1296-1308. |
| [3] | Ji Bingyu, Zhang Wenbiao, He Yingfu, Duan Taizhong, Liu He. Connotation and development trends of integration between geological reservoir modeling and numerical reservoir simulation [J]. Acta Petrolei Sinica, 2024, 45(7): 1152-1162. |
| [4] | Liu He, Li Yanchun, Jia Deli, Wang Suling, Qiao Meixia, Qu Ruyi, Wen Pengyun, Ren Zhihui. Application status and prospects of artificial intelligence in the refinement of waterflooding development program [J]. Acta Petrolei Sinica, 2023, 44(9): 1574-1586. |
| [5] | Liu Xiwu, Wang Xinyu, Liu Yuwei, Zhang Jinqiang, Liu Jiong, Liu Qian. Current status and development direction of seismic prospecting technology for continental shale oil in China [J]. Acta Petrolei Sinica, 2023, 44(12): 2270-2285. |
| [6] | Liu Wenling, Han Dakuang. Digital twin system of oil and gas reservoirs: a new direction for smart oil and gas field construction [J]. Acta Petrolei Sinica, 2022, 43(10): 1450-1461. |
| [7] | Sun Jinsheng, Liu Fan, Cheng Rongchao, Feng Jie, Hao Huijun, Wang Ren, Bai Yingrui, Liu Qinzheng. Research progress and prospects of machine learning in lost circulation control [J]. Acta Petrolei Sinica, 2022, 43(1): 91-100. |
| [8] | Li Ning, Xu Binsen, Wu Hongliang, Feng Zhou, Li Yusheng, Wang Kewen, Liu Peng. Application status and prospects of artificial intelligence in well logging and formation evaluation [J]. Acta Petrolei Sinica, 2021, 42(4): 508-522. |
| [9] | Wang Minsheng, Guang Xinjun. Status and development trends of intelligent drilling technology [J]. Acta Petrolei Sinica, 2020, 41(4): 505-512. |
| [10] | WANG Yi-fa. A new intelligent bit design [J]. Editorial office of ACTA PETROLEI SINICA, 2003, 24(1): 92-95. |
| [11] | WANG Yi-fa. REAL-TIME EXPERT CONTROL SYSTEM FOR ARTIFICIAL INTELLIGENCE DRILLING [J]. Editorial office of ACTA PETROLEI SINICA, 2001, 22(2): 83-86. |
| [12] | Zhang Shaohuai, He Huacan, Li Qi, Guo Jianming. STUDY ON INTELLECTUALIZATION OF PETROLEUM DRILLING INFORMATION TECHNOLOGY [J]. Editorial office of ACTA PETROLEI SINICA, 1996, 17(4): 114-119. |
| [13] | Jiang Xiaodian, Li Weiran. THE APPLICATIONS OF WALSH TRANSFORM AND ARTIFICIAL NEURAL NETWORK TO IDENTIFY THE ROCK STRATUM AND LITHOLOGY AUTOMATICALLY [J]. Editorial office of ACTA PETROLEI SINICA, 1994, 15(4): 17-22. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 100724
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn