石油学报 ›› 2015, Vol. 36 ›› Issue (7): 837-848.DOI: 10.7623/syxb201507008

• 油田开发 • 上一篇    下一篇

页岩气纳米孔气体传输模型

吴克柳1,2, 李相方1, 陈掌星2   

  1. 1. 中国石油大学石油工程教育部重点实验室 北京 102249;
    2. 加拿大卡尔加里大学化学与石油工程系 阿尔伯塔 T2N1N4
  • 收稿日期:2014-12-18 修回日期:2015-05-10 出版日期:2015-07-25 发布日期:2015-08-06
  • 作者简介:吴克柳,男,1985年1月生,2008年毕业于中国地质大学(武汉)石油工程专业,2013年获中国石油大学(北京)油气田开发工程专业博士学位,现为加拿大卡尔加里大学博士后,主要从事非常规油气开发研究。Email:wukeliu19850109@163.com
  • 基金资助:

    国家自然科学基金重大项目(No.51490654)、国家自然科学基金项目(No.51374222)和国家重大科技专项(2011ZX05030-005-04)资助。

A model for gas transport through nanopores of shale gas reservoirs

Wu Keliu1,2, Li Xiangfang1, Chen Zhangxing2   

  1. 1. Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China;
    2. The Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
  • Received:2014-12-18 Revised:2015-05-10 Online:2015-07-25 Published:2015-08-06

摘要:

页岩气纳米孔气体传输模型是准确进行页岩气数值模拟的基础,对页岩气经济开发具有重要的意义。页岩气纳米孔气体传输机理包括纳米孔体相气体传输和吸附气表面扩散,而纳米孔体相气体传输机理包括连续流动、滑脱流动和努森扩散。基于滑脱流动和努森扩散两种传输机理,分别以分子之间碰撞频率和分子与孔隙壁面碰撞频率占总碰撞频率的比值作为滑脱流动和努森扩散的权重因子,将这两种传输机理叠加,建立了纳米孔体相气体传输模型。基于Hwang模型,考虑高压条件下吸附气覆盖度的影响,建立了纳米孔吸附气表面扩散模型。结合纳米孔体相气体传输和吸附气表面扩散模型,建立了页岩气纳米孔气体传输模型,并采用分子模拟和实验数据进行了验证。结果表明:①滑脱流动、努森扩散和表面扩散对气体传输的贡献是此消彼长的,其主要受孔隙尺度和压力的支配。②滑脱流动在介、宏孔(半径> 2 nm)和高压条件下,对气体传输贡献大;在微孔(半径≤2 nm)和低压条件下,其贡献小,可忽略。③努森扩散在宏孔(半径> 50 nm)和低压条件下,对气体传输贡献不可忽略,在其他条件下均可忽略。④表面扩散在微孔(半径≤2 nm)和全压力范围内,总是主宰了气体传输;当孔隙半径> 25 nm和压力高于1 MPa时,表面扩散贡献可忽略;当孔隙半径在2~25 nm和压力低于5 MPa时,表面扩散贡献较高,不能忽略。

关键词: 页岩气, 纳米孔, 滑脱流动, 努森扩散, 表面扩散

Abstract:

The model for gas transport through nanopores provides a basis for accurate numerical simulation, which is of great significance to the economic development of shale gas reservoirs. The gas transport mechanisms in nanopores include bulk phase gas transport and adsorbed gas surface diffusion, of which the former refers to continuum flow, slip flow and Knudsen diffusion. A model for bulk gas transport is established through weighted superimposition of slip flow and Knudsen diffusion. Where the ratios of intermolecular collision frequency and molecule-pore wall collision frequency to the total collision frequency are taken as the weight factors for slip flow and Knudsen diffusion, respectively. Based on Hwang model, a model for adsorbed gas surface diffusion is proposed with considering an adsorbed gas coverage at high pressure. On basis of the two models above, a general model for gas transport is developed, and validated with molecular simulation and experimental data published. Results show that: (1) the contributions of slip flow, Knudsen diffusion and surface diffusion to gas transport trade off with each other, and are manily dominated by pore size and pressure; (2) slip flow has the greatest contribution to gas transport under the conditions of meso-macro pores (pore radius>2 nm) and high pressure, while can be ignored under the conditions of micropores (pore radius≤2 nm) and low pressure; (3) Knudsen diffusion has a non-negligible contribution to gas transport under the conditions of macropores (pore radius>50 nm) and low pressure, while that in other cases can be ignored; (4) surface diffusion always plays the dominant role in gas transport through micropores (pore radius≤2 nm) at all over the range of pressure, whereas its contribution can be ignored under the condition of the porous radius greater than 25 nm and the pressure higher than 1 MPa, but cannot be ignored in nanopores with porous radius of 2-25 nm at the pressure lower than 5 MPa.

Key words: shale gas, nanopores, slip flow, Knudsen diffusion, surface diffusion

中图分类号: