石油学报 ›› 2012, Vol. 33 ›› Issue (2): 249-256.DOI: 10.7623/syxb201202009

• 地质勘探 • 上一篇    下一篇

常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性

吉利明 1,2 邱军利 1 夏燕青 1 张同伟 2,3   

  1. 1 中国科学院地质与地球物理研究所油气资源研究重点实验室 甘肃兰州 730000;2 Bureau of Economic Geology,Jackson School of Geosciences,The University of Texas at Austin,Austin,TX 78713,USA;3兰州大学资源环境学院 甘肃兰州 730000
  • 收稿日期:2011-08-16 修回日期:2011-11-12 出版日期:2012-03-25 发布日期:2012-05-17
  • 通讯作者: 吉利明
  • 作者简介:吉利明,男,1963年1月生,2005年获中国地质大学(武汉)博士学位,现为中国科学院地质与地球物理研究所兰州油气资源研究中心研究员,主要从事石油地质研究工作。
  • 基金资助:

    国家重大科技专项(2011ZX05008-002-22)、国家重点基础研究发展规划(973)项目(2012CB214704-02)和国家留学基金委员会基金(2007106304)资助。

Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning

JI Liming 1,2 QIU Junli 1 XIA Yanqing 1 ZHANG Tongwei 2,3   

  • Received:2011-08-16 Revised:2011-11-12 Online:2012-03-25 Published:2012-05-17

摘要:

野外采集的黏土岩的电镜扫描图像分析显示,黏土矿物孔隙分布于颗粒之间和颗粒内部板片自然错断处,前者形态不规则,后者呈楔形或面状缝隙。具层间结构的蒙脱石层内发育纳米级连通孔隙。蒙脱石微孔隙最为发育,伊-蒙混层黏土次之,其粒间孔和层面缝隙为20~100 nm,层内连通孔隙小于50 nm。高岭石黏土主要发育20~100 nm的粒间孔。伊利石和绿泥石晶体颗粒较大,以微米级孔隙为主。吸附实验所反映的各种黏土矿物甲烷吸附能力与电镜扫描反映的微孔发育程度相吻合,指示泥页岩中的纳米级微孔在一定程度上决定着泥页岩的比表面积和气体储存能力。黏土岩的孔隙发育与岩石成因和成岩演化有关,孔隙大小主要受黏土颗粒大小的控制。

关键词: 黏土矿物, 孔隙结构, 甲烷吸附, 页岩气, 电镜扫描

Abstract:

The scanning electron microscope (SEM) image analysis of clay rocks collected from the field demonstrates that pores of clay minerals are distributed among grains and at natural fractures of intragranular plates, where the former has an irregular shape and the latter shows a wedge-shaped or plane gap. Connected nano-pores develop in layers of the smectite that has interlayer structures, micropores are most frequently found in smectite clay and secondly in illite and smectite mixed layers. In clay minerals, the size of intergranular pores and plane gaps ranges from 20 to 100 nm and connected pores within layers are less than 50 nm in size. Kaolinite clay mainly has intergranular pores with a size of 20-100 nm. Illite and chlorite are of larger crystal particles and dominated by micropores. The methane adsorption capacity of various clay minerals determined by experiments is consistent with the degree of micropore development measured by SEM, indicating that dominant nano-pores in shales, to a certain extent, determine the surface to volume ratio of shales as well as the storage capacity of shale gas. The porosity development of clay rocks is related to the genesis and diagenetic evolution of shales, while the pore size is controlled mainly by the particle size of clay minerals.

Key words: clay mineral, pore structure, methane adsorption, shale gas, SEM