石油学报 ›› 2021, Vol. 42 ›› Issue (8): 1072-1080.DOI: 10.7623/syxb202108008

• 油田开发 • 上一篇    下一篇

烟道气辅助SAGD蒸汽腔扩展机理

鹿腾1,2, 班晓春1,2, 李兆敏1,2, 高永荣3, 郭二鹏3, 杨建平4, 马宏斌4, 王宏远4, 魏耀4   

  1. 1. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    2. 中国石油大学(华东)非常规油气开发教育部重点实验室 山东青岛 266580;
    3. 中国石油勘探开发研究院 北京 100083;
    4. 中国石油辽河油田公司 辽宁盘锦 124010
  • 收稿日期:2020-10-08 修回日期:2021-06-21 出版日期:2021-08-25 发布日期:2021-08-31
  • 通讯作者: 鹿腾,男,1985年10月生,2008年获中国石油大学(华东)学士学位,2014年获中国石油大学(华东)博士学位,现为中国石油大学(华东)石油工程学院副教授,主要从事稠油油藏开采理论与技术研究。
  • 作者简介:鹿腾,男,1985年10月生,2008年获中国石油大学(华东)学士学位,2014年获中国石油大学(华东)博士学位,现为中国石油大学(华东)石油工程学院副教授,主要从事稠油油藏开采理论与技术研究。Email:luteng@upc.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFA0702400)资助。

Mechanisms on expansion of SAGD steam chamber assisted by flue gas

Lu Teng1,2, Ban Xiaochun1,2, Li Zhaomin1,2, Gao Yongrong3, Guo Erpeng3, Yang Jianping4, Ma Hongbin4, Wang Hongyuan4, Wei Yao4   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    2. MOE Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum, Shandong Qingdao 266580, China;
    3. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    4. PetroChina Liaohe Oilfield Company, Liaoning Panjin 124010, China
  • Received:2020-10-08 Revised:2021-06-21 Online:2021-08-25 Published:2021-08-31

摘要: 通过研究烟道气对蒸汽冷凝传热的影响,借助可视化物理模型实验,观察了烟道气辅助SAGD蒸汽腔扩展特征。蒸汽冷凝实验结果表明,常规注蒸汽过程中,蒸汽会在冷却壁面迅速冷凝并聚成大液滴,248 ms后大液滴在重力作用下快速脱落。蒸汽内加入烟道气后,1 217 ms后才观察到少量液滴脱落现象,气体增加了蒸汽分子扩散的阻力,大量的液滴在冷凝壁面形成隔热膜,降低了蒸汽与冷却壁面的冷凝传热系数。可视化物理模型实验结果表明,低物性储层阻碍了SAGD蒸汽腔向上发育。随着烟道气和蒸汽的共同注入,烟道气可以促进SAGD蒸汽腔突破低物性储层,蒸汽腔波及系数提高6.6%,采出程度提高9.6%。这是由于烟道气辅助SAGD开发中,烟道气通过降低蒸汽与油藏岩石之间的冷凝传热系数,蒸汽腔遇到低物性储层后没有迅速冷凝变为热水,而是保持蒸汽腔状态突破低物性储层,从而增加了蒸汽腔的扩展范围,提高了储层的动用程度和采油速度。

关键词: 烟道气, 蒸汽, 冷凝传热, 室内实验, 物理模拟, 微观机理

Abstract: The influence of flue gas on steam condensation heat transfer was studied firstly in this work, and then the expansion characteristics of steam chamber in flue gas assisted SAGD (steam assisted gravity drainage) was observed through visualization of physical model experiments. The steam condensation heat transfer experiment shows that the steam condensed rapidly on the condensation wall and formed large droplets during the conventional steam injection process, and then the droplets fell off quickly under the action of gravity after 248 ms. While when adding flue gas in steam, few droplets fell off until 1 217 ms. The reason for this phenomenon is the gas increased the resistance of steam molecular diffusion, a large number of droplets formed a heat-insulating film on the condensation wall and then reduced the condensation heat transfer coefficient between the steam and the condensation wall. The visualization physical simulation experiments show that the reservoirs with poor properties impeded the upward growth of steam chamber in SAGD process. With the co-injection of flue gas and steam, flue gas can strengthen SAGD steam chamber to break through the reservoirs with poor properties, and the sweep efficiency of steam chamber and the recovery increased by 6.6% and 9.6% respectively. The reason is the flue gas reduced the condensation heat transfer coefficient between steam and reservoir rock in flue gas assisted SAGD development. When the steam chamber met reservoirs with poor properties, it did not condense quickly into hot water, but kept the state of steam chamber to break through the reservoirs with poor properties, thus increased the expansion range of steam chamber.

Key words: flue gas, steam, steam condensation heat transfer, laboratory experiment, physical modelling, microcosmic mechanism

中图分类号: